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ABSTRACT

Chemical processes within flows are ubiquitous. There exists an important class of reactions that

result in a phase change from liquid to solid: precipitation reactions. Inspired by recent microflu-

idic experiments, this dissertation develops a unified mathematical framework for handling such

reactions occurring within a slow-moving fluid flow. A key challenge for precipitate reactions is

that, in general, the location of the developed solid is unknown a priori. To model this situation,

we use a multiphase framework with fluid and solid phases; the aqueous chemicals exist as scalar

fields that react within the fluid to induce phase change. We conduct several analytic and numer-

ical validation studies to verify that the model exhibits desired fluid–structure behaviors without

requiring interface boundary conditions. To demonstrate the functionality of this framework, we

conduct full-scale simulations of two scientific applications: a microfluidic reaction experiment as

well as a geophysical study of sinkhole formation. The results of this dissertation are (1) a rigorous

derivation of a model framework that conserves mass and incorporates fluid-structure interaction,

and (2) numerical methods for solving the full PDE system, which have been implemented in

open-source software. The framework can be applied to precipitate reactions where the precipitate

greatly affects the surrounding flow, a situation appearing in many laboratory and geophysical

contexts including the hydrothermal vent theory for the origin of life. More generally, this model

can be used to address low Reynolds number fluid–structure interaction problems that feature the

dynamic generation of structures.
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Part I

Framework Derivation and Validation
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CHAPTER 1

MOTIVATION

Before one reads a dissertation on any topic, it is helpful to first address why one should bother.

This chapter answers this question of motivation, to which the answer is twofold: (1) the ability to

numerically simulate precipitate reactions would be useful to the costly process of running microflu-

idic experiments, and (2) the framework developed in the following chapters is widely applicable to

modeling flows with complex, dynamically-formed structures. Even more than the resulting system

of equations, we hope that the reasoning throughout the derivations offers a rational explanation

for why certain modeling choices are made. All multiphase models, to some degree, must rely

on fundamental assumptions – none are “true physics”, but rather useful approximations. It is

necessary to be transparent about parameter regimes where a model should – and should not –

be applied. For example, are there known parameter regimes where a model fails to capture real-

world behavior? This thesis derives, analyzes, and simulates a novel framework primarily aimed

at modeling a precipitate reaction inside a microfluidic device, but can also be applied to a wider

range of scientific phenomena.

Precipitate reactions result in the growth of nano-crystals in complex patterns. We can model

how these patterns grow and form, e.g. how one end is pointy but another other side is smooth,

etc. However, when one looks at the big picture in the presence of fluid motion, the result of

the collective growth of all crystals is that the precipitate impedes flow. Even though crystal

growth “should”, for full resolution, be described on the nano-scale, our ultimate interest is on the

scale of millimeters or more. Multi-scale physics are not unique to this problem, and in fact have

gained considerable interest over the past several years, including in areas of mechanics, chemistry

[112, 50], and biological processes [42]. To emphasize, the goal is not to accurately model each

and every crystal growth. It is not even to try to model the probabilistic nature of this or that

crystal growing at a particular point in space. Instead, the goal is a system of equations that

describe the chemical reaction process “accurately enough”, and the macro response of the fluid

to the dynamically generating precipitate “accurately enough”. It is the inherant tension between

these two objectives that makes developing a model nontrivial, and the resulting novel framework

applicable to a wide class of problems.

2



An analogy to our goal is the objective of modeling fluid flow through porous media. Porous

media, resolved in all its gory detail, involves an intricate, inter-connected web of material which

allows fluid to zig-zag through voids. However, the porous media literature often provides a “ho-

mogenization” and simply treats the material as having a single scalar (or possibly tensor) quantity

to describe how fluid flows within the medium. In this way, one loses the inherant complexity of

the porous material, and additionally makes all porous materials – every beach on every ocean –

exactly the same. But that is okay, because in the end, hydrogeologist do not really care about

the exact motion of the fluid dripping through layers of rock, sand and clay as rainwater collects.

What they care about is the average amount of fluid that passes through the grains; for example,

the rate of water collected into an underground reservoir. The results provided by porous media

experiments are well approximated by these continuum models which demonstrates the practical

success of this approach.

This chapter continues in Sec. 1.1 with a description of the experiment that motivated this

dissertation. Sec. 1.2 describes currently available mathematical methods for modeling problems

similar to our own, as well as explanations for why these methods are inadequate for our particular

goals. Sec. 1.3 provides a brief explanation for what our new model will accomplish and how this

is done, as well as a bird’s-eye view of what one will learn by reading this dissertation.

1.1 A microfluidic experiment

One hypothesis for the “origin of life” is that the first biomolecules were formed in undersea

hydrothermal vents. In this theory, passive, anisotropic diffusion across a precipitate membrane

supports the transmembrane gradients necessary for the formation of the first biochemical molecules

[67]. An experimental approach to study this theory examines simpler systems in microfluidic

reactors which allows for the controlled study of the prebiotic chemistry in hydrothermal vent

chimneys (see Fig. 1.1) [7, 67].

Microfluidic devices have become an important tool in modern chemistry and biomedical ana-

lytics [78]. One application is the “lab on a chip”, i.e. the miniaturization of chemical separation

and analysis procedures onto a disposable device as small as a few square centimeters. The de-

vices are typically made from etched glass or lithographically-processed elastomers and the fluid is

usually controlled mechanically by external pumps or electrically via electro-osmotic flows [66].
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Recent studies have used microfluidic methods to form inorganic membranes within Y-shaped

devices [9, 111]. The membranes result from chemical reactions between two different solutions

that are injected separately but later merge in a long reaction channel that brings the reactants

Figure 1.1: Inactive “Black
smoker” hydrothermal vent.
Vents like this are integral to
one theory for the “origin of
life” [67]. Reproduced from
[57] with permission.

into direct contact. This merging is usually performed under low

Reynolds number (Re) conditions and for miscible liquids, such as

aqueous solutions of NaOH, and a dissolved metal salt, such as

NiCl2. At the reaction interface between these liquids, a precipi-

tate, such as Ni(OH)2, swiftly forms a thin porous membrane (see

Fig. 1.2). This precipitate reaction typically involves the formation

of microscopically small colloid particles and either their aggrega-

tion or addition to a membrane. This phenomenon is related to

so-called “chemical gardens” which consist of thin cylindrical pre-

cipitate membranes separating a metal salt solution from silicate

or hydroxide solutions [88, 65].

Ding et al. showed experimentally that membrane thickness in-

creases with the square root of time, indicating diffusion-controlled

growth [31]. The membrane thickening occurs only in the direction

of the metal salt solution (e.g. NiCl2) and not in the direction of

the anionic precipitation partner (e.g. OH−), indicating that the

membrane is more permeable to anions than cations. This phe-

nomenon has been qualitatively explained by the charged nature

of the membrane that suppresses the transmembrane transport of

the cation [9, 111].

The modeling challenges presented by this experiment involve

a confluence of topics that have been studied before, namely ionic reactions [94, 117], precipitation

[120, 1], passive diffusion through a membrane [73, 22, 31], and fluid-structure interaction [107, 20,

87, 100, 99, 70, 84]. The particular combination of these aspects provides the opportunity for a new

model that captures them all. Before explaining the approach to this new model, we first detail

why currently available methods are insufficient for our goals.
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Figure 1.2: Inorganic precipitate membrane formed in a microfluidic channel. (a) The photograph
of the resulting membrane after 2 h with 0.5 M NaOH and 0.5 M NiCl2 solutions being injected
simultaneously into the microfluidic device. The mixing part of the channel is 50 mm long, 2 mm
wide, and approximately 130 µm high. (b) A magnified view of a selected area from (a). (c-g) A
sequence of micrographs showing the unidirectional thickening process after (c) 1 min, (d) 15 min,
(e) 30 min, (f) 60 min, and (g) 120 min. Scale bars correspond to (a) 1 cm, (b) 5 mm, and (c) 200
µm. Reproduced from [36] with permission.

1.2 Existing mathematical methods

We now review existing models and describe how they are insufficient for our purposes. It must

be emphasized that these models have all proven extremely succesful in the areas to which they

have been applied. The new modeling challenges, motivated by the experiment detailed above,

pose a confluence of objectives such that no existing model can be directly taken and applied. The

current review will consist of two parts: chemical reactions and fluid-structure interactions. These

two fields have developed independently, which is one reason why a new model is useful – it provides

a unifying framework.

Equations for chemical reactions rely on knowledge of the “stoichiometry”, which is an equation

for how reactants combine to form products. For example,

Cu2+(aq) + 2 OH−(aq)→ Cu(OH)2(s), (1.1)
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represents the net ionic equation for the reaction, visualized in Fig. 1.3, of copper sulfate (CuSO4)

with sodium hydroxide (NaOH) to form the precipitate copper hydroxide (Cu(OH)2); the sulfate

and sodium ions are excluded for clarity, as they do not form a precipitate. The (aq) parenthetical

indicates that the ions on the left hand side are part of an aqueous solution, e.g. dissolved in water,

and (s) indicates the right hand side is a solid, i.e. the precipitate.

Figure 1.3: Formation of Cu(OH)2

precipitate in a test tube. Photo-
graph by José Furtado, distributed
under a CC BY-SA 4.0 license [40].

The advantage of stoichiometric equations is that there is

no context of the environment, no mention of solubility, no in-

dication as to whether the reaction occurs deep underground

or in the far reaches of outer space, and so on. These equa-

tions are incredibly useful because they boil down the interac-

tions of trillions and trillions of individual molecules, interact-

ing in space and time in an assortment of complex geometric

configurations, into a single line which accurately reflects the

mass transfer from reactants to products. What Eq. (1.1)

demonstrates is that exactly one Cu2+ ion reacts with ex-

actly two OH− ions to form exactly one Cu(OH)2 molecule,

always and forever. One key detail missing in stoichiometry

is the rate at which the reaction proceeds.

The simplest chemical reaction is given by “nth-order ki-

netics” which models the reaction of n species. These reaction

equations use the law of mass action, which says that the rate

of a reaction is proportional to the product of all the reac-

tant’s concentrations [11]. Therefore, an ordinary differential

equation (ODE) modeling the precipitation reaction reaction

in Eq. (1.1) could be written as

d [Cu(OH)2]

dt
= k

[
Cu2+

]α [
OH−

]β
(1.2)

where [ · ] means the concentration of the chemical species, k is the reaction rate constant and α and

β determine the order of the reaction. In general, k, α, and β must be determined experimentally

and, in particular, α and β cannot simply be taken from the stoichiometry (e.g. α = 1, β = 2).

Assuming that k, α, and β are obtained from running costly experiments, the above equation is

a good model for obtaining the time-dynamics of [Cu(OH)2]. However, there is one subtle point
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that needs to be addressed; what is meant by “concentration”? There are different ways to define

concentration, all of which are equivalent in the case of single-phase chemistry, but differ when

phase-change occurs. This dissertation will demonstrate a conclusive way to incorporate classical

reaction kinetics (like the equation described above) into precipitate reactions occurring within a

fluid flow while preserving important physical principles such as conservation of mass.

The second component of our model is the fluid-structure interaction (FSI). The models, tech-

niques and results of FSI have been succesfully applied to many applications from vibration of

aircraft wings to pumping through human vasculature [32]. FSIs occur in multi-physics problems

where separate components of the domain have different mechanical properties. “Fluid” flow causes

deformation of a boundary “structure”, which in turn affects the fluid flow, and so on. For exam-

ple, a researcher might be interested in the mechanical stress occurring on a blood vessel wall as

varying amounts of blood are pumped (see Fig. 1.4); inside the vessel is viscous liquid, governed by

the Navier-Stokes equations, and the vessel itself is elastic which is governed by its own, separate,

system of equations. The efficient and accurate coupling of these two equations comprises the main

difficulty in FSI problems. There have been several numerical approaches developed to address FSI

problems [51], which we will briefly review.

Figure 1.4: Example of FSI application: sim-
ulation of blood flow through artery using
(i–iii) IBM and (iv) OpenFOAM. Repro-
duced from [46] with permission, with more
algorithmic details found in [58].

A key difficulty in the numerical solutions of FSI

problems is that the different governing equations

partition the domain, such that they are separated

by an interface. This interface moves dynamically,

and therefore one approach to FSI focuses on the

interface-tracking problem [101, 106]. The obvious

issue with using an interface-tracking method for the

present precipitation problem is: where does one de-

fine the interface of a dynamically generated struc-

ture? Precipitate will be generated continuously,

according to solutions to differential equations, so

there is a need to avoid any method that requires

the singular creation of an interface from nothing.

An alternative approach to FSI is called the “im-

mersed boundary method” (IBM), in which a single

domain partitioning is used that is non-conforming
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with the fluid-structure interface. The “trick” employed by the IBM is to treat the effect of the

structure on the fluid as a force in the fluid governing equations. This allows one to avoid remesh-

ing, but creates its own issues related to the accurate approximation of a “structure” that lies off

the fluid grid; one must always interpolate the structure onto the fluid mesh, which necessarily

introduces its own errors. Furthermore, there is still the same problem of how to define the forces

from a solid that is being continuously generated via a reaction, e.g. what is the effect of a solid

that is only 20% developed?.

Finally, one lesser-known technique, developed in the late 1990s, is similar to the IBM but

instead of representing the structure as a force within the fluid momentum equation, it is represented

by a scalar field [5]. This technique is reminiscent of representing the porous media in Darcy’s

equation by a scalar (or tensor) “permeability” field. The model introduced in this dissertation

is similar to this technique, with the additional property of a “fuzzy” interface between fluid and

structure and a mechanism for the the dynamic generation of the underlying structure. Additionally,

an independent derivation of the underlying governing system from a classical multiphase framework

is provided.

To summarize, a key assumption of these FSI techniques is that the existence of the structure in

question is binary – it either does or does not exist. There is no mechanism to smoothly introduce

a structure, which is exactly what happens in a precipitate reaction: in the beginning, there is

only fluid and no structure. As the chemicals react, a structure appears and the fluid responds

to the presence of the structure. Of course, one could simply ignore the fact that at one moment

the structure is not there, and at the next the structure is, but that also calls into question how

one maintains conservation of mass – the mass of the precipitate structure is necessarily derived

from the aqueous chemical species that react inside the liquid phase. The framework derived in this

dissertation allows the seamless coupling of phase-change chemistry with fluid-structure interaction.

The next section describes the goals of this new model and how they follow the philisophy of

historical literature while constructing a new framework that suits our purpose.

1.3 What a new framework achieves

The multiphase framework developed here builds on previous ones [23, 120, 61], but with some

keys differences that are guided by a combination of physical principles, model simplicity, and the

microfluidic experiments described in Sec. 1.1. First, our formulation conserves the total mass

of the components — solvent, dissolved species, and precipitate — throughout the reaction. In

8



particular, the model accounts for changes in solute concentrations that result from the formation of

new precipitate and the associated exclusion of solvent volume. This effect is is essential for overall

mass conservation, but is neglected in previous models that treat reaction chemicals as scalar

fields distinct from the multiphase material. The treatment of reaction chemicals as additional

components of a multiphase material, i.e. with their own volume fractions, has been successfully

modeled by many [79, 117] but greatly complicates the analysis, interpretation, and simulation

of the governing equations. Second, by making certain choices in the averaging procedure for the

multicomponent stress, our formulation becomes equivalent to an incompressible Brinkman system.

Figure 1.5: Examples from analysis and simulations conducted in this thesis: (a) Velocity profile of
1D reduced model gives no-slip behavior in reaction zone (grey) in Sec. 3.1; (b) Discrete particles
implemented for moving porous media give expected porous behavior in Sec. 3.3; (c) Velocity
magnitude of full simulations in wavy microfluidic domain, where dark red is maximum velocity
and dark blue is zero velocity in Chapter 4.

This equivalence is important for two reasons. First, it guarantees that the model reduces to the

Stokes equations in the fluid limit and to Darcy’s equation in the porous-medium limit [15, 35, 49].

In particular, it guarantees that when the precipitate is fully developed, the interface behaves as an

impermeable surface without requiring any interface boundary conditions [10, 91]. As demonstrated

in Section 3.1.2, many existing multiphase models fail to exhibit this behavior [14, 25, 23, 96], as

they were developed primarily for highly permeable systems. Second, the equivalence to Brinkman
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significantly simplifies the overall structure of the partial differential equation (PDE) system by

eliminating certain cross-terms in the stress divergence that arise in other models.

This dissertation is divided into two parts. Part 1 introduces a model framework that unifies

reaction chemistry, which allows a structure to be dynamically generated, and fluid-structure in-

teraction effects, where a structure smoothly affects the surrounding fluid flow in a manner that

approximates classical fluid-structure interaction problems. Specifically, Chapter 2 develops the

model framework, both in a simple case designed to capture the microfluidic experiment of Sec. 1.1

while also providing an extension in order to capture more complex phenomenon, such as geophysi-

cal and biological dynamics. The model framework is validated in Chapter 3 using both theoretical

analysis and numerical benchmarks – see Figs. 1.5(a,b).

Part 2 showcases the model framework for two applications and ends on a discussion. Chapter

4 focuses on the motivating microfluidic experiment – see Fig. 1.5(c) – while Chapter 5 simulates

sinkhole formation. Finally, Chapter 6 summarizes the dissertation and discusses the implications

of the framework to future problems. The modeling framework presented in this dissertation,

coupled with freely available open-source packages for implementing simulations, will be of use to

the wider scientific community.
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CHAPTER 2

THE MULTIPHASE FRAMEWORK

We require a framework that accurately describes several aspects of a microfluidic experiment,

including the advective transport of ionic species, their reaction to form a product, the precipitation

of the product out of solution, and finally the response of the bulk fluid motion to the dynamically-

generated precipitate membrane. Advection-diffusion-reaction (ADR) equations are derived for

the aqueous chemical concentrations, while the fluid and membrane dynamics are described by

multiphase mass and momentum balance equations. In many multiphase models, either constituent

can be viscous, viscoelastic, or otherwise. Since the membrane adheres to the substrate, we assume

the membrane is an immobile solid, leading to considerable simplifications. Later, a method will

be presented to handle solids with complex rheology and the ability to move throughout a domain.

We assume that aqueous reactants and products contribute mass, but not volume, to the fluid

phase. The solvent and precipitate each have their own distinct, constant mass densities, and

any arbitrary control volume can be divided into solvent and precipitate volume fractions. The

formation of new membrane involves the precipitation of product out of solution and the seques-

tration of solvent. A key modeling assumption is that the volume of fluid sequestered equals the

volume of the resulting membrane. As we will show, this assumption ensures incompressibility of

the phase-averaged velocity field, i.e. the so-called Darcy velocity.

The derivation of the model framework proceeds as follows. Sec. 2.1 derives evolution equations

for the reaction of aqueous ionic species and mass balances for all chemical species as well as fluid

and solid phases. Sec. 2.2 describes the momentum equation for the fluid and solid phases, including

a discrete description for complex, mobile solids. Sec. 2.3 details a scheme to switch from discrete

to continuum descriptions of the solid phase via invertible operators. Regardless of the specific

choices, using the following framework will result in a closed, coupled PDE system governing the

chemistry and physics of the system, where total mass is conserved throughout aqueous reactions

and phase transitions. Sec. 2.4 summarizes the model framework for the interested reader.
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2.1 Volumeless ions within a multiphase fluid

In this section we derive equations for the chemical reactions. We follow the “nucleation and

growth” model of precipitation [69] and separate the reaction into two sequential parts: in the first,

reactants come together to form an aqueous product, and the second describes the aggregation of

this aqueous product into a solid precipitate. While many aqueous chemical reactions do not alter

the solution volume significantly, the formation of a precipitate excludes fluid volume and therefore

can alter the local concentration of the dissolved species. Accordingly, our model neglects the

volume occupied by the aqueous species but does account for changes in species concentration that

are due to the precipitated solid excluding fluid volume. This effect introduces additional terms in

the aqueous reaction equations that are required for mass conservation. To our knowledge these

additional terms are not accounted for in the literature that treats aqueous chemicals as scalar

fields distinct from the multiphase material.

2.1.1 Basic reaction

We take the pedagogical approach of first deriving our model for the simple case of two reactants

combining to form a single product. In later sections, the possible reactions that the framework

can handle are expanded, although many of the technical details follow straightforwardly from this

basic case. The aqueous reaction is written as a generic net ionic equation

aA(aq) + bB(aq)→ cC(aq) (2.1)

where A(aq), B(aq), and C(aq) are chemicals in the aqueous phase and a, b, and c are their

respective stoichiometric coefficients; the precipitation reaction is written simply as

C(aq)→ C(s) . (2.2)

As a concrete example consider the reaction described in Sec. 1.1,

Ni2+(aq) + 2OH−(aq)→ Ni(OH)2(aq) (2.3a)

Ni(OH)2(aq)→ Ni(OH)2(s) . (2.3b)

Then A = Ni2+, B = OH− and C = Ni(OH)2 and a = c = 1, b = 2.

The aqueous chemicals will be measured with a variable for the number of chemicals per unit

solvent volume, i.e. molarity, which we will call ψi for chemical species i ∈ {A,B,C}. Reaction rates

depend on a reactants’ molarity, and molarity can change due to two independent factors: either
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the number of molecules changes due to the aqueous reaction, or the solvent volume changes due to

precipitation. Because either one can occur in a precipitation reaction, these two competing effects

must be carefully considered when formulating the reaction equations.

Figure 2.1: Schematic of precipitate reaction in a control volume. Precipitation causes solution
(white) to transform into solid (shaded) after a certain concentration threshold is reached of aqueous
product C. Aqueous chemicals A, B and C are volumeless scalar fields while the solvent and solid
are treated as multiphase components. The volume of solid gained is exactly equal to the volume
of solvent lost. Reproduced from [36] with permission.

We begin by deriving equations for how the aqueous reaction proceeds in a spatially homoge-

neous environment; later the effects of advective and diffusive spatial fluxes will be added. Suppose

the chemicals exist in some aqueous solution of fixed control volume V0. The chemicals undergo

both the aqueous and precipitation reactions which results in fluid mass and solvent volume being

converted to precipitate mass and volume (see Figure 2.1). The fluid component has mass

Mf =
(
ρs +

∑
Miψi

)
θsV0 (2.4)

where ρs is the constant solvent mass density (without any reactants or products present), θs is

the solvent volume fraction, and Mi is the molar mass of chemical species i. The summation

represents the contribution of the chemical species to fluid mass, so that the fluid mass density

is not constant. The precipitate component has mass Mp = ρpθpV0 where ρp is the constant

precipitate mass density and θp is the precipitate volume fraction. Physically, precipitate mass is

composed of both precipitated chemical C and sequestered solvent mass.
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The change in ψi purely due to aqueous reaction, i.e. no precipitation, can be modeled as a

second-order kinetics reaction

ψ̇
(aq)
A = −arψAψB, ψ̇

(aq)
B = −brψAψB, ψ̇

(aq)
C = crψAψB . (2.5)

where the dot indicates a derivative with respect to time, r is the rate of aqueous reaction per

chemical concentration, and the (aq) superscript refers to the fact that Eq. (2.5) models the change

in ψi purely due to aqueous reaction, i.e. Eq. (2.1). More general power laws are sometimes used

to model chemical kinetics, but here we use purely second-order kinetics for simplicity [see 17, pp.

573 - 575]. None of the analysis, however, depends specifically on this choice and the results could

be carried forward for other kinetics.

To derive equations for the change in ψi purely due to precipitation we appeal to ideas from con-

tinuum mechanics. The concentration of ions A in the control volume is written as ψA = nA/(θsV0)

where nA is the number of A ions in V0. Note that this formulation makes explicit the dependence

of ψA on both nA and θs. Consider the change in a small increment of time ∆t. Then the time-

dependent variables are updated so that

ψA + ∆ψA =
nA

(θs + ∆θs)V0
. (2.6)

Recall that nA is constant during precipitation as only C(aq) precipitates. Approximating for small

∆θs and neglecting higher-order terms gives

ψA + ∆ψA =
nA
θsV0

(
1− ∆θs

θs

)
= ψA

(
1− ∆θs

θs

)
. (2.7)

Then, cancelling the ψA, dividing both sides by ∆t, and letting ∆t → 0 gives the change in ψA

purely due to precipitate reaction as ψ̇
(p)
A = −ψAθ̇s/θs. By symmetry, a similar formula holds for

ψ̇
(p)
B . Note that both of these are essentially applications of the product rule for ∂t(ψiθs) = 0, which

physically means that the total number of ions of i ∈ {A,B} in the control volume does not change

in time due to precipitation.

A similar procedure can be followed for ψC , except now the number of aqueous chemicals nC

changes as C(aq) precipitates,

ψC + ∆ψC =
nC + ∆nC

(θs + ∆θs)V0
. (2.8)

Above, both nC and θs change in time. Expanding both expressions while linearizing for small ∆θs,

dividing by ∆t, and taking the limit as ∆t → 0 one obtains ψ̇
(p)
C = −ψC θ̇s/θs + ṅC/θs. The first

term in this expression is analogous to those obtained for reactants A and B, and simply describes
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the effect on concentration when solvent volume is changing. The second term, however, is new

and describes the effect on ψC as aqueous C molecules are converted into precipitate membrane.

We write ṅC = αθ̇s where the specific value of α will be found shortly to guarantee conservation of

mass throughout the entire reaction. The expressions for the rate of change of aqueous chemical

concentrations due to precipitation are thus:

ψ̇
(p)
A = −ψAθ̇s/θs, ψ̇

(p)
B = −ψB θ̇s/θs, ψ̇

(p)
C = −ψC θ̇s/θs + αθ̇s/θs , (2.9)

where the (p) superscript refers to the fact that Eq. (2.9) models the change in ψi purely due

to precipitation of the membrane out of solution, i.e. Eq. (2.2). Assuming that the aqueous and

precipitate reactions act independently, ψ̇i = ψ̇
(aq)
i + ψ̇

(p)
i , gives

ψ̇A = −arψAψB − ψAθ̇s/θs (2.10a)

ψ̇B = −brψAψB − ψB θ̇s/θs (2.10b)

ψ̇C = crψAψB − ψC θ̇s/θs + αθ̇s/θs (2.10c)

These equations describe the dynamics of aqueous species molarity in the absence of spatial fluxes.

To obtain the value of α that guarantees conservation of mass, we again apply a continuum

mechanics argument. The change in precipitate mass after a small time step is ∆Mp = ρp∆θpV0.

To simplify the expression for change in fluid mass, we expand ∆Mf while neglecting second order

terms to get

∆Mf = V0ρs∆θs + V0θs
∑
i

Mi∆ψi + V0∆θs
∑
i

Miψi . (2.11)

Replacing the ∆ψi with their respective differential terms in Eqs. (2.10) and performing some

algebraic manipulation produces

∆Mf = V0ρs∆θs + V0θsrψAψB(cMc − aMA − bMB) + V0MC∆nC . (2.12)

Conservation of mass during the aqueous reaction (2.1) implies

aMA + bMB = cMC . (2.13)

Thus, the term in parenthesis in (2.12) vanishes. Meanwhile, conservation of mass of the entire

system implies ∆Mp = −∆Mf , i.e. the mass lost by the fluid equals the mass gained by precipitate.

Additionally, the assumption that fluid volume is converted perfectly to precipitate volume implies

∆θp = −∆θs. Using the respective definitions of Mi and solving for ∆nC gives

∆nC =

(
ρp − ρs
MC

)
∆θs . (2.14)
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Dividing by ∆t and taking the limit ∆t→ 0 gives ṅC = αθ̇s where

α =
ρp − ρs
MC

. (2.15)

Physically, this value of α corresponds to the concentration of C(aq) that must leave the fluid phase

during precipitation in order for mass to be conserved. This completes our description of temporal

dynamics; now we introduce spatial fluxes.

In experiments, the aqueous reaction occurs within the flow of a microfluidic device and therefore

spatial fluxes must be considered. To describe these fluxes, consider the general conservation law

for the chemical mass per unit control volume φ = Miψiθs,

∂φ

∂t
+∇ · J = Γ (2.16)

where J is the flux of φ and Γ is a transfer term for the rate that φ enters the system. We choose

J to account for advection and diffusion of the chemical concentrations,

∂(MAψAθs)

∂t
+∇ ·

(
MAψAθsvs − κA∇(MAψA)

)
= ΓA (2.17a)

∂(MBψBθs)

∂t
+∇ ·

(
MBψBθsvs − κB∇(MBψB)

)
= ΓB (2.17b)

∂(MCψCθs)

∂t
+∇ ·

(
MCψCθsvs − κC∇(MCψC)

)
= ΓC (2.17c)

where vs is the (tracer) velocity of the solvent and κi are diffusion coefficients which possibly

depend on the solvent volume fraction. Note that the diffusive flux used above transports mass

according to gradients in molarity ψi, not gradients in φi. This choice produces the physically

realistic steady state of uniform molarity in a quiescent, non-reacting fluid that has inhomogeneous

volume fraction.

Assuming that the reactions and spatial fluxes act independently, the Γi correspond to the rates

given in Eqs. (2.10). Rearranging and multiplying each equation by its respective molar mass Mi

gives

ΓA = −arMAθsψAψB (2.18a)

ΓB = −brMBθsψAψB (2.18b)

ΓC = crMCθsψAψB + αMC θ̇s (2.18c)

where α = (ρp−ρs)/MC . Now that mass balance equations for the chemistry are established, mass

balance equations for the multiphase solvent-precipitate system are needed.
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A simple but necessary assumption is that our volume is occupied by only solvent and membrane,

i.e. there are no “voids”. This no-void assumption implies

θs + θp = 1 (2.19)

everywhere. Mass balances for the solvent and membrane phases provide

∂(ρsθs)

∂t
+∇ · (ρsθsvs) = Rs (2.20a)

∂(ρpθp)

∂t
= Rp (2.20b)

where Ri denotes the rate of mass added to phase i. Eq. (2.20b) has no advective term since the

precipitate membrane is assumed to be immobile.

To ensure conservation of total mass, the rates Rs and Rp must be related. To derive this

relationship, let V0 be an arbitrary control volume. The total mass (of all components) in V0 is

M(V0) =

∫
V0

ρsθs + ρpθp +
∑

Miψiθs dV. (2.21)

Summing the five mass balance equations, (2.17a)–(2.17c) and (2.20a)–(2.20b), integrating over V0,

and applying the divergence theorem gives

d

dt
M(V0) +

∫
∂V0

(
ρsθsvs +

∑
Ji

)
· n̂︸ ︷︷ ︸

boundary flux

dS =

∫
V0

Rs +Rm +
∑

Γi︸ ︷︷ ︸
transfer & reaction

dV . (2.22)

where n̂ is the outward unit normal vector. Summing Eqs. (2.18) and applying (2.13) gives∑
Γi = αMC θ̇s. For the sake of obtaining a relationship between Rs and Rp, briefly consider

the case of zero boundary flux. Then, to conserve total mass within any control volume, we must

have Rs +Rp +αMC θ̇s = 0 holding point-wise. Substituting the value of α in Eq. (2.15), using the

no-void assumption (2.19) and the definition of Rm in (2.20b) gives

Rs = −ρs
ρp
Rp. (2.23)

This relationship is required for overall mass conservation.

Now consider the so-called Darcy velocity field qs = θsvs. Substituting the value of Rs from

Eq. (2.23) into Eq. (2.20a), using a consequence of the no-void assumption (θ̇s = −θ̇p) and substi-

tuting Rp by its value in Eq. (2.20a) implies that the fluid Darcy velocity is divergence-free:

∇ · qs = 0 (2.24)
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and therefore the multiphase material is incompressible. Now return to Eq.(2.22) and consider the

entire domain Ω with total massM =M(Ω). From the above argument, the right-hand-side of this

equation vanishes as a necessary condition on mass conservation. Then applying incompressibility

via Eq. (2.24), gives the total mass balance:

dM
dt

= −
∫
∂Ω

∑
Mi

(
qsψi − κi∇ψi

)
· n̂ dS . (2.25)

As expressed in this equation, the total mass of the system is conserved as long as the chemical flux

at the boundary vanishes. More generally, the total mass of the system can change according to

how much chemical mass is being injected or removed via the boundary flux terms. This completes

the proof of conservation of mass for our system.

We now specify our choice for the form for the precipitation term Rp. Although complicated

models of precipitation exist [69, 81], we employ a simple model in which the rate of membrane

mass growth is proportional to the amount of product, provided that the product concentration

exceeds some precipitation threshold, i.e.

Rp = βψCθsH(ψC − ψ∗C) (2.26)

where β is a rate constant, H is the standard Heaviside function and ψ∗C is the concentration

threshold for precipitation to occur.

2.1.2 Complex reactions

Chemical reactions in the real world exist as single components of complex reaction systems;

reactants themselves come from previous reactions and products go onto form their own reactions.

Notably this is true in biochemical reactions, where hundres of cascading reactions form a system

necessary for an organism’s survival. In this section we extend the simple reaction system described

previously to a more general form that can handle the vast majority of reaction stoichiometries

that one can encounter.

The reaction involving arbitrary numbers of reactants and products generalizes easily from the

case outlined in the previous section. To be specific, we consider the general aqueous reaction of n

reactants into m products
n∑
i=1

aiAi(aq)→
m∑
i=1

biBi(aq) (2.27)

and, of these m products, one will precipitate from the aqueous to solid phase, which is given by

Bk(aq)→ Bk(s), for a single k ∈ {1, 2, . . . ,m} (2.28)
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The case of multiple components of the product precipitating will be handled later. The fluid

component in a control volume V0 now has mass equal to

Mf =

(
ρs +

n∑
i=1

MAiψAi +
m∑
i=1

MBiψBi

)
θsV0. (2.29)

Analogous to the derivation in the previous section, the change in ψi purely due to aqueous

reaction can be modeled by the equations

ψ̇
(aq)
Aj

= −ajr
n∏
i=1

ψγiAi
j ∈ {1, . . . , n} (2.30a)

ψ̇
(aq)
Bj

= bjr
n∏
i=1

ψγiAi
j ∈ {1, . . . ,m} (2.30b)

where r is still the aqueous reaction rate and γi is the reaction order of species i, which will have

to be determined experimentally; note that if γi ≡ 1, then the above is an nth-order reaction. To

be clear, in order for the above equation to be well-defined, the n+ 1 parameters γi and r will need

to be determined, likely using costly experiments. The reaction purely due to precipitation is

ψ̇
(p)
Aj

= −ψAj θ̇s/θs, j ∈ {1, . . . , n} (2.31a)

ψ̇
(p)
Bj

= −ψBj θ̇s/θs + αδjkθ̇s/θs, j ∈ {1, . . . ,m} (2.31b)

where δjk is the classic Kronecker delta function. Analogous to the previous chapter, α is defined

to be

α =
ρp − ρs
MBk

. (2.32)

We still assume that the aqueous reaction (2.27) and precipitate reaction (2.28) occur independently,

such that the total rate of change of ψ̇i is simply the sum of these reactions. Due to conservation

of mass throughout these reactions, the following relationship holds:

n∑
i=1

aiMAi =
m∑
i=1

biMBi (2.33)

where Mj is the molar mass of species j. The system of ADR equations is

∂(Miψiθs)

∂t
+∇ · (Miψiθs − κi∇(Miψi)) = Γi, i ∈ {A1, . . . , An, B1, . . . , Bm} (2.34)

where we need to derive all of the mass transfer terms Γi. These are given by

ΓAj = −ajrMAjθs

n∏
i=1

ψγiAi
, j ∈ {1, . . . , n} (2.35a)

ΓBj = bjrMBjθs

n∏
i=1

ψγiAi
+ δjkαMBk

θ̇s, j ∈ {1, . . . ,m} (2.35b)
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where an explanation for how these are derived is given in the previous section. We now have

extended our model to handle aqueous reactions of arbitrary complexity.

We briefly note that reversible reactions can also fit into our model framework – one would

simply need to add reaction rates corresponding to the product concentrations, in accordance with

the law of mass action and traditional reversible reaction kinetics. To reverse the precipitation

reaction, one simple changes the sign of α, i.e. the mass flows from precipitate to fluid, as opposed

to the other way around. We now address the slightly more complicated case of multiple precipitates

in the same reaction.

If multiple (aqueous) products undergo precipitation, then one must necessarily also provide

more volume fraction variables, i.e. add more phases. Therefore, if K aqueous products form

precipitates (K ≤ m) then we must have in the model K + 1 distinct volume fraction variables.

The no-void assumption then becomes

θs +
∑
k

θ(k)
p = 1, (2.36)

where θ
(k)
p denotes the kth precipitate phase. We then need to obtain the reaction equations and,

in particular, need to define the analogous rate “α” for each precipitate such that total mass is

conserved throughout the reaction. To be clear, we wish to extend the results of the above section

where we allow multiple precipitate membranes to form from the aqueous products:

Bk(aq)→ Bk(s), for k ∈ IK (2.37)

where IK is the set of K indices of the aqueous products that precipitate. Most of the equations

of the previous section still hold, so we will not repeat the entire derivation. We only note that

Eq. (2.35b) is changed to

ΓBj = bjrMBjθs

n∏
i=1

ψAi +
∑
k∈IK

αkδjkMBk
θ̇s, j ∈ {1, . . . ,m} (2.38)

in order to account for the (possibly) different αk values, which are only defined for k ∈ IK . The

mass of the precipitate phase k is

M(k)
p = ρ(k)

p θ(k)
p V0 (2.39)

where ρ
(k)
p is the mass density of the kth precipitate. We also have the change in fluid mass as

∆Mf = V0ρs∆θs + V0θsr

[
m∑
i=1

biMBi −
n∑
i=1

aiψAi

]
n∏
j=1

ψAj + V0

∑
k∈IK

αkMBk
∆θs. (2.40)
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Like in the previous section, one can use the stoicheometry of the reaction to set the term in brackets

to zero. We are now in a position to derive the αk terms. Remember that mass is conserved during

precipitation, i.e. ∆Mf = −
∑

k∈IK ∆M(k)
m ; writing this out using Eqs. (2.39) and (2.40) gives

V0ρs∆θs + V0

∑
k∈IK

αkMBk
∆θs = −

∑
k∈IK

ρ(k)
p ∆θ(k)

p V0. (2.41)

Volume is also conserved but, because there are multiple precipitates, there is a question as to how

to divide the volume among the newly formed precipitates.

Cancelling out the V0 and plugging in conservation of volume one obtains

∑
k∈IK

αkMBk
= −ρs +

∑
k∈IK

ρ(k)
p (2.42)

which is a single equation for K unknowns αk. So how do we determine the specific αk? The

most straightforward method is to simply select the αk, based on intuition from the case of a single

precipitate, and then use the above equation to verify that this is an admissible solution. Therefore,

we let each αk obey

αk =
Kρ

(k)
p − ρs
KMBk

(2.43)

which one can verify satisfies Eq. (2.42). Therefore, while these choices of αk do conserve mass, they

are not unique, and other choices could give the same conservation of mass scheme. Additionally,

if K = 1, the single-precipitate scheme is recovered exactly, as expected.

The new K + 1 mass balance equations are then

∂(ρsθs)

∂t
+∇ · (ρsθsvs) = Rs (2.44a)

∂(ρ
(k)
p θ

(k)
p )

∂t
= R(k)

p , k ∈ IK (2.44b)

where we need to find an analogous way to find a relationship between Rs and all R
(k)
p . By

inspection of Eq. (2.23), the mass reaction terms Ri are required to obey

Rs = −ρs

∑
k∈IK

ρ(k)
p

−1 ∑
k∈IK

R(k)
p . (2.45)

which one can verify does indeed conserve mass in a manner similar to the single-precipitate equa-

tions of Sec. 2.1.1. This section has established a complete description of chemistry which can occur

in the vast majority of precipitation reactions. The next section pertains to the second half of the

framework: the fluid-structure interaction.
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2.2 Multiphase momentum equations

A significant advantage of our model is that the chemistry and fluid dynamics are described

separately – chemicals exist as volumeless scalar fields which obey traditional reaction kinetics,

while the volume fractions of the multiphase material obey mass and momentum transfer equations.

Until this point, we have focused exclusively on the chemical reactions and mass movements. In

this section, we focus on momentum transfer between the phases.

The nondimensional Reynolds number is defined to be Re = ρUL/η, where ρ is a characteristic

mass density, U is a characteristic velocity, L is a characteristic length, and η is a characteristic

viscosity. The Reynolds number represents the ratio of inertial to viscous forces in a problem. We

are concerned with applications in microfluidic devices (small L) or with slow moving fluid (small

U), so it is safe to assume that the Reynolds number is negligible (Re � 1). Since inertial effects

are assumed negligible, the solvent momentum balance can be written as

∇ ·T− ξvs = θs∇p (2.46)

where T is the multiphase stress tensor, p is a so-called common pressure that is shared by the

fluid and precipitate phases [23], and ξ is a friction coefficient which depends on volume fraction.

Deviating slightly from the predominant multiphase literature, we chose the form of the stress

tensor as

T = η
(
∇qs +∇q>s

)
(2.47)

where η is the fluid viscosity. In particular, since qs = θsvs, we have placed the fluid volume fraction

θs inside the gradient, whereas many multiphase models place the θs outside of the gradient but

inside the divergence [16, 25, 23]. Such a choice must be made for model closure, and neither is

fully justified by first principles. We make the choice above to obtain equivalence to the Brinkman

system [15] when the membrane is immobile, as discussed below.

2.2.1 Stationary solid and friction

Indeed, applying incompressibility of the Darcy velocity, as derived in Eq. (2.24), to Eq. (2.46)

simplifies it to a Brinkman equation with variable coefficients:

η∇2qs −
ξ

θs
qs = θs∇p . (2.48)

Note that Eq. (2.48) does not have any cross-derivative terms that would appear if the traditional

multiphase stress tensor were used [23, 56]. Because the membrane is assumed immobile (vm ≡ 0),

no momentum equation is needed for it.
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We emphasize that our choice of stress tensor in Eq. (2.47), which is slightly unconventional

in the multiphase literature, is responsible for producing equivalence to the Brinkman system.

The Brinkman equations were originally formulated in 1949 [15] and, since then, have undergone

fundamental theoretical development [19] in close cooperation with experimental measurements [77],

and, in recent decades, numerical simulation [80, 74]. We will demonstrate in section 3.1.2 that

this system produces the expected no-slip behavior on a fully formed membrane. It is interesting

that, with the above modification, the modern multiphase averaging framework can be made to

produce the Brinkman system, and therefore is consistent with 70 years of research on porous media

systems.

The friction coefficient ξ should be chosen in such a way that, at high membrane volume fraction,

friction becomes the dominant effect in Eq. (2.48). The choice made here, and mentioned briefly

in Leiderman and Fogelson [62], is to use the Kozeny-Carman (KC) formula for permeability as it

depends on porosity [34]. In the present notation, the KC relationship gives the friction coefficient

as

ξKC(θs) = h
(1− θs)2

θs
(2.49)

where h is an arbitrary constant. This friction coefficient will provide the desired no-slip behavior

in the precipitate limit θp → 1. Angot [5] discusses the implications of a similar singular friction

term in a Brinkman system, although their model does not include the solvent volume fraction term

in front of the pressure gradient and only applies to domains with spatially discontinuous volume

fractions; the current framework generalizes this notion by being able to account for smooth spatial

and temporal gradients in the volume fraction.

As an alternative to the singular ξKC , the friction coefficient can be chosen to be a (non-singular)

Hill function, as used in Leiderman and Fogelson [61, 62],

ξH(θs) = h
(1− θs)n

Kn + (1− θs)n
. (2.50)

The use of Hill functions is largely empirical, although it has significant advantages in that it is

finite in the precipitate limit and therefore more numerically stable. Additionally, K determines the

half-saturation point and n indicates the qualitative manner at which this saturation is achieved.

These parameters allow for fine-tuning to specific experimental observations.

Finally, a friction term employed in many biofilm multiphase models is

ξB(θs) = hθs(1− θs) . (2.51)
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This choice has become popular in the literature [16, 24, 25, 23, 96], and is often justified by the idea

that friction should vanish if either phase, θs or θp, is absent. While it is an intuitive notion, we will

show in Section 3.1.2 that this friction coefficient does not produce the physically realistic behavior

of no-slip velocity on fully developed solid surfaces. To produce this behavior, it is necessary that

friction dominates, not vanishes, in the limit θp → 1.

Figure 2.2: Comparison of friction terms ξ. ξKC (solid) is singular in the limit θs → 0, ξH (dash)
is non-singular in the porous limit (K = 0.5, n = 2) and ξB (dot) yields maximum friction when
both phases are present in equal amounts. All terms have been normalized by choosing h such that
ξ(θ∗s) = ξ∗. Reproduced from [36] with permission.

A visual comparison of these three friction coefficients is shown in Figure 2.2. For the sake of

comparison, we have chosen the constant h so that the three curves intersect at a reference porosity

θ∗s , i.e. ξ(θ∗s) = ξ∗. For ξ∗ = 3, θ∗s = 0.3, this condition generates the constants hKC ≈ 1.8, hH ≈ 4.5

(K = 0.5, n = 2), and hB ≈ 14.3. For ξKC and ξH , the value θ∗s can be loosely interpreted as

the percolation threshold, i.e. the critical porosity below which the medium essentially behaves as

impermeable to flow [43]; however, we will show in Sec. 3.2 that this analogy should not be taken

literally, at least in two spatial dimensions.

We now have a complete multiphase model sufficient to simulate the immobile precipitates in the

microfluidic experiments. But what if the membrane is not immobile? This could be important if,

instead of a precipitate, we are modeling more complex media such as geophysical or biological flows

that contain solids, formed out of reactions, which themselves move and are subject to complicated

rheological laws. Tthe multiphase literature is rife with continuum descriptions of complex media,

and we are confident that such a continuum extension to our momentum equations is possible.

However, in this dissertation, we will take a different approach. In the next section we will discuss
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an extension to our model to be able to handle complex media using a discrete, as opposed to

continuum, description of their interaction forces.

2.2.2 Complex discrete rheology

While simple fluids are governed by the Navier-Stokes equations – equations with considerable

experimental validation – a similar continuum governing equation is not agreed upon for materials

with complex rheological properties. Therefore, in this dissertation, we resort to a discrete approx-

imation that will allow us to numerically resolve the velocity field of the porous phase and, more

importantly, allow the medium to move. To accomplish this, the porous media volume fraction field

θp is represented by N discrete point particles. Each particle occupies no space, but the individual

forces prescribed on each particle will cause the collection to qualitatively behave like media with

complex rheology.

To jump between this particle-description of the porous phase and its field-description – which is

necessary in order to interact with our fluid governing equations described in the previous section

– we define a simple Gaussian-smoother operator to “smooth out” each particle, along with an

inverse operator. The aggregate of these smoothed out particles generates a field. In this manner,

we can handle arbitrarily complex “solid” phases, with the only requirement that we can describe

individual solid-solid forces – the only solid-fluid interaction is via a Stokes drag. These discrete

particle approaches to modeling porous materials is motivated by the “Discrete Element Method”

[55], although it is not the same as the “Combined Finite-Discrete Element Method” [95, 75], which

discretizes a structure using finite elements and, among other things, can account for rotation,

which our present model cannot. That being said, our discrete model, as you will see, sufficiently

handles macro properties of porous media with complex rheology, and fits nicely within the model

framework.

Because the problems under consideration are at a scale where inertial forces are very small

compared to viscous forces, Newton’s second law can be replaced by the “Stokes force balance”

approximation

Fi = 0, i = 1, . . . , N, (2.52)

where Fi is the sum of forces on particle i. This fundamental assumption means that the model

is only valid where the media in question moves so slowly as to make inertial effects insignificant.

This assumption also means that, from the fluid’s perspective, the structure is moving so slowly

such that it is practically immobile – making our fluid continuum description of the previous section
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still applicable. The practical effect of this approximation is that the movement of the particles at

each moment in time depends only on the geometry of the configuration of particles at that instant

of time. To repeat: there is no inertia, or memory, in our system.

In particular, the net force on particle i, Fi, will be decomposed into a sum of the following

forces: gravity Fi
g, particle-particle cohesion Fi

c, particle-wall adhesion Fi
a, and seepage drag Fi

d

such that

Fi = Fi
g + Fi

c + Fi
a + Fi

d, i = 1, . . . , N. (2.53)

Each of the component forces is now described. A description of how these forces are computed in

practice, for a large number of particles (N � 1), is reserved for Chapter 5.

Gravity Force. The gravitation force is the simplest to define; because the particles are

immersed in a fluid, the buoyant effect of the density differences is considered:

Fi
g = −(ρp − ρs)gViêz (2.54)

where g is a physical gravitation density constant with units L/T 2, Vi is the volume of particle i

with units L3, and êz is the unit vector pointed vertically “up”. Because this force does not depend

on position or velocity, it is a constant in time for every particle. This force is zero in the case that

the fluid and porous medium densities to be equal. It is primarily for this reason that we do not

make an assumption of equal densities, as buoyancy effects are non-negligible in many applications,

including the sinkhole dynamics of Chapter 5.

Cohesion Force. A cohension force exists between two particles pi and pj , i 6= j. For the

cohesion force we use a Lennard-Jones-like potential L [85]:

L(r; s, d, ε) =

s
[(

d

r

)2

− 2

(
d

r

)]
r < (1 + ε)d

0 r ≥ (1 + ε)d

(2.55)

with equilibrium distance d (the sum of the two particle’s radii) and “strength” parameter s with

units M/T 2. The independent variable r is the Euclidean distance between particle centers. The

interface point (1 + ε)d delineates the radial distance in which the cohesion force is active; ε is

consequently taken to be a small positive number (e.g. 0.1). The force acting on particle i as a

result of its interaction with j, Fij , is derived by taking the negative gradient of this potential to

obtain
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Fij
L (r; s, d, ε, û) =

2s

(
d

r2

)[
1− d

r

]
ûij r < (1 + ε)d

0 r ≥ (1 + ε)d
(2.56)

where ûij is the unit vector from pi to pj . If (1 + ε)−1 < d/r < 1, then the particles are separated

and the force is attracting. If d/r > 1, then the particles are overlapping, and the force is repulsive.

This force replicates cohesion by creating an equilibirum distance between the particles (r = d)

while also preventing “overlapping” particles.

The above model diverges from the usual 12-6 Lennard-Jones potential in two ways. First,

instead of 12-6, a 2-1 exponential configuration is used to minimize the stiffness of the system

as much as possible. Second, the cohesion force exists only when particles are nearly touching;

this reflects the physical phenomenon that particles, once in contact, stay in contact, but will not

spontaneously “attract” towards one another if they are sufficiently far apart. Due to the piecewise

definition of the potential, the force is also discontinuous in r. This could be remedied in a fairly

straightfoward extension by choosing a potential that is differentiable and has compact support for

r < (1 + ε)d.

Because the particles exist in a subset of Rn, n ≥ 2, the cohesive force for the ith particle will

be written as

Fi
c =

N∑
j=1
j 6=i

Fij
L

(
||xi − xj ||; s, ri + rj , ε,

xi − xj
||xi − xj ||

)
(2.57)

where xj is the location of particle j, and ri, rj are the radii of particle i and j, respectively. Due

to the interaction distance (1 + ε)d, the vast majority of the Fij
L quantities will be zero. This leaves

the possibility for some clever algorithm to avoid computing all of those unnecessary zeros at each

time step – this will be addressed in Chapter 5.

Adhesion Force. An adhesion force is used to address particle-wall interactions. Similar to

the cohesion force, the adhesion force is defined using a Lennard-Jones potential by projecting the

location of a particle onto a pre-defined wall and, temporarily, imagining that there is another

particle there. In this manner, particles adhere to – and, more importantly, do not pass through –

walls.

Fluid Drag Force. For an inert sphere in a surrounding flow, the drag on this sphere is given

classically by Stokes drag D = 6πηRU, where R = d/2 is the radius of the particle “spheres”, η

is the fluid viscosity, and U = qf − qip is the difference in Darcy velocities between the flow and
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particle i. This force is in the direction of flow and, importantly, is the only force that involves the

velocity of the particle i. So in our notation this force becomes

Fi
d = 6πηri

(
qs(xi)− qip

)
. (2.58)

Algebraic Equation for Particle Velocity. The Stokes force balance means that there is

only a single algebraic term involving the velocity of the particle. Therefore we have:

Fi
g + Fi

c + Fi
a + Fi

d = 0, (2.59)

which is a linear, algebraic system of equations for qip, the velocity of particle i. Solving for qip is

straightforward, giving

qip = qs(xi) +
1

6πηri

(
Fi
g + Fi

c + Fi
a

)
, (2.60)

where fluid velocity and gravity, cohesion, and adhesion forces are known at a given time because

the particle positions are known. Knowing qip, a simple forward-difference discretization can be

used to update the position of the particles.

2.3 Discrete–continuum interpolation operators

In order to complete this model framework, we need a way to interpolate from a continuum to a

discrete representation, and back again. The discrete-to-continuum component is straightforward;

we use a smoothing operator to “smooth out” the discrete particles into a continuum field. The

continuum-to-discrete operator poses a challenge, however, because it is an inverse problem that is

ill-defined without applying constraints. We now detail the discrete-to-continuum operator, then

describe the inverse continuum-to-discrete operator.

2.3.1 Discrete-to-continuum operator

In order to generate a porosity field θp, we need to be able to interpolate a set of discrete

particles into a continuous field. There are several legitimate ways one can choose to do this; the

method described presently is not unique. We have chosen to treat our porosity field as the result

of a convolution of the the discrete particles, represented as point sources, with the Gaussian kernel

G defined by:

G(r) = G(r;h) = exp

(
− r

2

h2

)
, (2.61)

where h is the bandwidth. The bandwidth will dictate how “large” the effect of one particle is.

This has the effect of “smoothing out” the point sources. Formally, for N particles in a domain
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Ω, the discrete-to-continuum operator G applied to a collection of particles p evaluated at a target

point x is defined as the convolution:

G
[
p
]
(x) = θp(x) =

∫
Ω
G(||x− y||)

[ N∑
j=1

sjδ(xj − y)
]
dy, (2.62)

where sj is the “strength” of particle j, xj is the source point of the jth particle, and δ is the usual

Dirac delta distribution. By properties of the Dirac δ, this expression can be simplified to

θp(x) =
N∑
j=1

sjG(||x− xj ||). (2.63)

Note that, for a single evaluation, this is an O(N) algorithm. The true cost is realized by evaluating

this sum at each of M spatial nodes where your the velocity is defined. Therefore, to evaluate the

entire porous media volume fraction field, one must evaluate

θp(xi) =

N∑
j=1

sjG(||xi − xj ||) for i = 1, 2, . . . ,M. (2.64)

This makes this field interpolation an O(MN) algorithm. Note that this is essentially a matrix-

vector multiplication which can be written as ~θp = G~s, where G is a rectangular M ×N system,

~s is an N × 1 vector and ~θp is a M × 1 vector. However, as both N and M will number in the

tens of thousands even for moderate problems, this asymptotic cost is much too high. Luckily,

there exist significantly better algorithms in the literature, including using Tree search algorithms

(see Appendix B) as well as a method known as the “Improved Fast Gauss Transform” algorithm

[45, 116, 97]. Both of these techniques are implemented in an excellent C++ package FIGTree1;

see the associated paper for more details [72]. At the end of the day, we can conduct this discrete-

to-continuous transform with cost O(N +M).

2.3.2 Continuum-to-discrete operator

The more difficult operation is going from continuum to discrete. While it would be nice if

an inverse gauss operator existed in the literature, that is not the case; the inversion of the above

transform is, in general, an ill-defined problem. What we can do, however, is define an approximate,

or pseudo, inverse as the operator that minimizes some cost function. While costly to perform, this

representation of an inverse gives good results in test cases (see Sec. 3.4).

We wish to define our operator G∗, which acts on a field F in a domain Ω. The fundamental

property that we desire of this operator is that it “undoes” the Gauss Transform G. As a reminder,

1Homepage for FIGTree: http://users.umiacs.umd.edu/~morariu/figtree/
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the Gauss transform G takes N points, defined at N spatial locations xi with sources si and a single

“spread” parameter h. In general, a new h could be defined for each point, but because we make

use of the fast gauss transform [45], we will use a single h for all particles. We now define a cost

function J , with input as a N(d+ 1) + 1 parameter vector θ = {xi, si, h}, for a given F (y) as:

J(θ) =

∫
Ω
||G [θ] (y)− F (y)||2 dy. (2.65)

Note that the parameter vector θ is unrelated to the porosity field θp; this notation is simply

to be more consistent with the machine learning literature [44]. Now, G∗ can be defined by an

optimization problem:

G∗[F ] = argmin
θ

J(θ). (2.66)

An important constraint on this operator is that N , the number of discrete particles that will

represent our field F , must be chosen beforehand. Including N as a parameter in θ makes this

problem ill-defined and computationally intractable, as approximating a given field by more and

more particles will naturally make the error go down, similar to transforms such as Fourier.

This definition of G∗ makes sense because, from θ, we can reconstruct a set of discrete particles

p by using xi as the particle positions and h and si proportional to particle radius. In this sense, G

and G∗ are inverses of one another. The method to solve this optimization problem is independent

of the definition, but one example using gradient descent is given in Sec. 3.4.

2.4 Framework summary

We include here a summary of our systems of equations for the interested reader. The fact

that this framework is modular should be considered an advantage, as one can “swap out” different

pieces depending on one’s own specific problem. The model for chemistry assumes that one has n

reactants forming m aqueous products, K of which go onto form precipitates. With this setup, one

will have n+m+K+1+1 scalar unknowns – corresponding to ψi (n+m), θi (K+1), and p (1) the

shared pressure term – and K+1 vector unknowns – corresponding to the Darcy velocities qi. The

specific equations that need to be chosen in order to make this a closed system are detailed in this

section. Please see the previous sections of this chapter for a detailed derivation and motivation

for each set of equations; this section simply serves as a convenient summary.
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2.4.1 Chemistry

The main equations for determining the temporal and spatial dynamics of the aqueous chemical

species are given by ADR PDEs. The n+m equations are

∂(Mjψjθs)

∂t
+∇ · (Miψiθsvs − κi∇(Miψi)) =− ajrMAjθs

n∏
i=1

ψAi , j ∈ {A1, . . . , An} (2.67a)

∂(Miψiθs)

∂t
+∇ · (Miψiθsvs − κi∇(Miψi)) =bjrMBjθs

n∏
i=1

ψAi +
∑
k∈IK

αkδjkMBk
θ̇s,

j ∈ {B1, . . . , Bm} (2.67b)

where αk is defined by

αk =
Kρ

(k)
p − ρs
KMBk

. (2.68)

If one has a multi-stage reaction, one simply has to couple together the different stages, including

the necessary equations for each stage. Additionally, if any of the above reactions are reversible,

one would need to add the traditional reversible terms for the law of mass action on the products.

See Sec. 2.1 for a detailed description of all parameters and variables.

The ADR equations above form a nonlinear, coupled PDE system that likely contains multiple

disperate timescales (e.g. diffusion, advection, and reaction timescales). In Sec. 4.1.2 we provide a

timescale separation method for decoupling and linearizing these PDEs to form a system which is

asymptotically similar to the above.

2.4.2 Mass Balance

The no-void assumption for K solid phases is

θs +
∑
k∈IK

θ(k)
p = 1 (2.69)

and the mass balance for the K + 1 volume fractions is

∂t(ρsθs) +∇ · (ρsqs) =Rs (2.70a)

∂t

(
ρ(k)
p θ(k)

p

)
+∇ · (ρ(k)

p q(k)
p ) =R(k)

p , k ∈ IK (2.70b)

where we require the relationship

Rs = −ρs

∑
k∈IK

ρ(k)
p

−1 ∑
k∈IK

R(k)
p . (2.71)

31



between the mass transfer terms for conservation of mass. If the solid is assumed immobile, then

q
(k)
p ≡ 0 in Eq. (2.70b). The R

(k)
p terms need to be chosen – this depends on the specific context

of one’s experiment, but a simple choice is the following:

R(k)
p = βkψBk

θsH(ψBk
− ψ∗Bk

), k ∈ IK (2.72)

where βk is a rate constant that is usually on the same order as r. In an ideal world it can be

determined by experiment, although the more likely practical scenario is that one chooses an order-

of-magnitude estimate based on the context of the specific problem. See Sec. 2.1 for a detailed

description of all parameters and variables.

2.4.3 Momentum Equations

The fluid phase momentum is described by

η∇2qs −
ξ

θs
qs = θs∇p , (2.73a)

∇ · qs = 0. (2.73b)

If the K precipitate phases are immobile, then q
(k)
p ≡ 0, and you are done. If not, and you are

using a discrete description of the solid phases, then the porous media particle velocities are given

by:

qip = qs(xi) +
1

6πηri

(
Fi
g + Fi

c + Fi
a

)
. (2.74)

See Sec. 2.2 for a detailed description of all parameters, variables, and forces.

2.4.4 Interpolation Operators

The interpolation operators are given by

G[p] =

N∑
j=1

sjG(||xi − xj ||) (2.75a)

G∗[F ] = argmin
θ

J(θ). (2.75b)

where

G(r) = exp

(
− r

2

h2

)
, J(θ) =

∫
Ω
||G [θ] (y)− F (y)||2 dy. (2.76)

See Sec. 2.3 for a detailed description of all parameters, variables, and operators.
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CHAPTER 3

FRAMEWORK VALIDATION AND ANALYSIS

The previous chapter was aimed exclusively at theoretical derivations that focused on internal

coherence of the framework – but how applicable is the framework to the physical situations it

purports to model? This chapter contains four benchmarks that demonstrate the capabilities

– and limitations – of the model framework. The chapter proceeds as follows: Sec. 3.1 derives

a reduced model of the stationary precipitate; this reduced model is simple enough to derive

largely analytic solutions and is the first evidence that the framework works as expected, while also

demonstrating deficiencies in existing models. Sec. 3.2 focuses exclusively on how our multiphase

Brinkman equation represents drag on two-dimensional bodies. Integral equation code is utilized

to provide an “exact” benchmark case, which allows us to discuss the form of a two-dimensional

multiphase “porous media” should be interpreted. Sec. 3.3 demonstrates how the continuum fluid

description can be coupled with discrete particles to represent slow-moving porous media. Finally,

Sec. 3.4 gives a one-dimensional test of the discrete-continuum operators.

3.1 Analysis of a reduced model

We consider a simplified system – corresponding to the reaction in Eqs. (2.1) and (2.2) – in

which incoming reactant concentrations are held fixed via chemostat [89]. By assuming parallel

flow and neglecting solute diffusion, the governing equations reduce to a planar system of ODEs.

This nonlinear system can be linearized around a fixed point and eigenvalue analysis provides an

estimate for the rate at which membrane forms. Moreover, we find that the equation for the aqueous

product is a second-order nonlinear ODE known as the Ricatti equation [86, 104]. Exact solutions

to the Ricatti equation give explicit formulas for the time dependence of the chemical product

and, consequently, the formation of new membrane. Once the membrane dynamics are known

exactly, the flow profile can be obtained through the numerical solution of a simple boundary value

problem (BVP). Visualization of the resulting flow profile allows a comparison between variants

of the multiphase framework. In particular, we demonstrate that the framework developed here

properly captures the transition from one-channel to two-channel flow as membrane develops.
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Analysis of any complicated system is aided by reduction into a form that is analytically

tractable. Inspired by microfluidic experiments, we assume that some chemostat controls the influx

of reactants’ molarity far upstream. All variables are kept constant along the longitudinal axis

by neglecting diffusion and assuming parallel flow. This requirement of parallel flow also means

that the reaction takes place everywhere along the longitudinal axis simultaneously. Finally, we

assume that the precipitation threshold is negligible. These assumptions approximately model

the fast-timescale, initial membrane growth observed in the experiments shown in Fig. 1.2 for a

single transverse cross-section of the domain; the slow-timescale membrane thickening is diffusion-

controlled, and therefore we do not seek to capture it in this analysis.

Applying these assumptions to the governing equations reduces the system considerably so that

it becomes a Poiseuille analysis; these assumptions generate the following reduced system

ψ̇C = crψAψB − (ψC − α)θ̇s/θs (3.1a)

θs + θp = 1 (3.1b)

θ̇s = −βψCθs/ρp (3.1c)

η
∂2qy
∂x2

− h
θ2
p

θ2
s

qy = θs
∂P

∂y
. (3.1d)

where only ψC , θs, θp, qy and ∂yP are unknown. The pressure gradient ∂yP is determined by

requiring a constant total flux for all time – see Eq. (3.12). Note that the longitudinal axis is

chosen to be y such that only this component of the Darcy velocity qs = qxx̂ + qyŷ remains. In

Section 3.1.1 we obtain an analytic estimate on the rate of membrane formation by treating ψC

and θp as a planar dynamical system. Then in Section 3.1.2 we solve Eqs. (3.1) with a combination

of analytic and numerical methods to visualize how the membrane affects the flow profile in time.

3.1.1 Fixed point analysis

Our approach is to linearize the reduced model system, then perform an eigenvalue analysis

about a steady state fixed point. The benefit of this is the eigenvalue gives an approximate estimate

to the rate that membrane develops, a quantity that is possible to measure experimentally.

Before doing a fixed point analysis, it is helpful to understand the conditions on which the

existence and stability of fixed points depend. To do so, eliminate the explicit dependence of ψ̇C

on volume fraction and replace all θ̇s in Eq. (3.1a) with Eq. (3.1c) to obtain a quadratic ODE of

the form

ψ̇C =
β

ρm
ψ2
C −

αβ

ρm
ψC + crψAψB . (3.2)
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which is an ODE in time alone, as the x-dependence of ψA and ψB are determined by the initial

conditions. Examining the qualitative behavior of this ODE by considering ψ̇C = ψ̇C(ψC), it is

quadratic in ψC , intercepts the ψ̇C axis at crψAψB ≥ 0, is concave up, and has equilibria at

ψ±C =
1

2

(
α± 1

β

√
α2β2 − 4crρpβψAψB

)
(3.3)

whose existence depends on the sign of

χ = α2β2 − 4crρpβψAψB . (3.4)

If χ > 0, Eq. (3.2) will have two fixed points, for χ = 0 these fixed points coalesce, and for χ < 0

there are no fixed points and ψ̇C will grow without bound; see Fig. 3.1(a).

We now ask the question of whether fixed points exist in the reduced system, i.e. χ ≥ 0 or α2β ≥

4crρpψAψB? We interpret this condition based on the physical meaning of the parameters: α =

(ρp − ρs)/MC has dimension of molarity and is O(10 M) where M refers to molar units, 1 M =

1 mol/liter; for example, using the reaction system in the introduction gives α ≈ 30 M. We note

that a similar analysis also justifies neglecting the precipitation threshold ψ∗C , as ψ∗C ≈ 0.001 M.

Although both r and β scale the rates of the aqueous and precipitate reactions, respectively, they

have different units. r has units of volume per time while β has units of mass per time. Because

experimental values of r and β are expensive to acquire, for the sake of this simplified analysis

we will assume that β ≈ rρp such that their effects do not impact the sign χ. The stoichiometric

coefficient c for C(aq) can be assumed O(1). Finally, examine the reactants ψA and ψB. Most

experiments in microfluidic chambers use molar concentrations with an upper bound of O(1 M); for

example, in Ding et al. [31] the maximum concentration of reactants was 0.5 M. Therefore, using

parameter values taken from experiments, χ > 0 and fixed points exist for the reduced system.

We now consider the planar dynamical system in phase space (ψC , θp) ∈ [0,∞) × [0, 1] with

fixed point (ψ−C , 1). The dynamical system is

ψ̇C = f(ψC , θp) =
β

ρp
ψ2
C −

αβ

ρp
ψC + crψAψB (3.5a)

θ̇m = g(ψC , θp) = βψC(1− θp)/ρp (3.5b)

where r, c, ρp, α, β, ψA, and ψB are assumed to be known and constant. The eigenvalues of

the Jacobian generated by equations (3.5) evaluated at the fixed points provide information about

the rate of growth of ψC and θp. This particular eigen-system is simple to interpret because the

eigenvectors align with the coordinate axes and therefore the eigenvalues correspond to the rates
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Figure 3.1: Dynamical system for ψC and θp. (a) Qualitative stability of ψ̇C(ψC) ODE. The
left equilibrium ψ−C is stable and exists for χ ≥ 0. (b) Visualization of planar dynamical system
approaching the fixed point (ψ−C , 1) for χ > 0. The thicker line corresponds to homogeneous initial
conditions for ψC and θp. Shaded region is outside of the domain of (ψC , θp) ∈ [0,∞) × [0, 1].
Reproduced from [36] with permission.

that the physical variables (ψC , θp) approach their equilibria when close to the steady state. These

rates are given by:

λψC
= − 1

ρp

√
χ, λθp = −1

2

(
αβ

ρp
+ λψC

)
. (3.6)

Both eigenvalues are negative, and therefore the fixed point is stable, because

αβ/ρp + λψC
= αβ/ρp −

√
χ/ρp > 0 (3.7)

always. For this same reason, it is true that |λθp | < |λψC
|, meaning the membrane volume fraction

approaches its fixed point at a slower rate than the aqueous product. This agrees with our intuition,

as the conversion of C(aq) to C(s) means we would expect θp production to lag behind ψC .

3.1.2 Ricatti-Poiseuille analysis

We now solve system (3.1) to visualize the transition in solvent velocity from one- to two-channel

flow. To summarize the approach, each equation in (3.1) is solved sequentially; Eqs. (3.1)(a–c)

admit exact solutions while the fluid velocity in Eq. (3.1)(d) requires numerical solution. Although

in this reduced case the location of the membrane is determined through the initial conditions ψ0
A

and ψ0
B, and therefore known a priori, the fact that no interface boundary conditions are required

demonstrates a considerable advantage of this model over more traditional approaches.

36



For initial conditions, let ψC(x, t) = 0 and θs(x, t) = 1. Fix the initial reagents by the piecewise-

constant values

ψ0
A(x) =

{
0.4 x ≤ (L+ w)/2

0 x > (L+ w)/2
, ψ0

B(x) =

{
0 x < (L− w)/2

0.3 x ≥ (L− w)/2
(3.8)

such that there is only a middle region of width w in x ∈ (0, L) in which the reactants A and B

are simultaneously present. We note that the following results hold for any choice of ψ0
i , provided

that χ(x) > 0.

Substituting Eq. (3.1)(c) into Eq. (3.1)(a) produces an ODE with quadratic nonlinearity known

as the Ricatti equation. Despite being nonlinear, the Ricatti equation admits an exact solution

for ψC(x, t); see Appendix A for a detailed solution. Given ψ0
A(x) and ψ0

B(x), the solution to this

Ricatti equation is:

ψC(x, t) = γ1γ2
ρp
β

(
eγ2t − eγ1t

γ2eγ1t − γ1eγ2t

)
(3.9)

where

γ1,2(x) =
1

2

(
−αβ ±

√
χ(x)

ρp

)
. (3.10)

In order to find the exact solution for θs(x, t), we must use the fact that Eq. (3.1c) is separable.

Then, because the antiderivative of ψC can be given in terms of elementary functions, we can obtain

an explicit formula for solvent volume fraction θs(x, t):

θs(x, t) =
γ1e

γ2t − γ2e
γ1t

γ1 − γ2
(3.11)

where have implemented the initial condition θs(x, 0) = 1. Then, the membrane volume fraction

θp(x, t) can be computed easily using the no-void assumption.

Until this point, all solutions in space have been treated independently. The effect of variations

in space is taken into account when solving for the longitudinal component of the Darcy velocity,

qy. We numerically solve Eq. (3.1d) for qy using a finite difference method. The x domain is

discretized into N intervals of equal width ∆x = 1/N such that xj = j∆x, j = 1, . . . , N − 1, and

use centered-difference approximations to the derivatives. Note that qy(x0) = qy(xN ) = 0 due to

the no-slip boundary conditions. This discretization results in a tridiagonal linear system which

can be solved in O(N) complexity by using the Thomas algorithm [see 98, pp. 78-79]. The velocity

is constrained to satisfy constant flux in accordance with experiments, which mathematically is

represented by ∫ L

0
qy dx = constant . (3.12)
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Figure 3.2: Developing precipitate affects fluid flow. (a) Flow profile in a 1D channel transitions
from one-channel to two-channel flow. The reaction region is shaded. (b) Relevant variables
evaluated in the reaction region at x = L/2, normalized for legibility; ψC develops first, followed by
θp, which when large enough triggers the transition from one- to two-channel flow. The percolation
threshold θ∗s is set to θ∗s = 0.3, which is why negligible change in fluid velocity is seen until θp ≈ 0.7.
The specific θ∗s was chosen based on the maximum volume fraction of an arrangement of packed
spheres in three dimensions [26]. The black diamond and square represent the system state inside
the reaction region at t = 2.5 and t = 5, respectively. Reproduced from [36] with permission.

This constant-flux condition allows the computation of the required pressure gradient at each time

step. We use the Julia programming language to solve the BVP [12].

The developing membrane for the 1D reduced model geometry is shown in Fig. 3.2(a). Mem-

brane develops within the shaded region, which in this example is 10% of the domain. Because

the membrane has finite width, the constant-flux condition causes the pressure gradient to increase

with the developing membrane, causing the maximum speed for the two-channel flow to be slightly

higher than the maximum speed for the one-channel flow. In this sense, the developing membrane

splits the domain into two symmetric one-channel flows. This transition occurs without the need

for boundary conditions at the fluid-membrane interface, indicated by the boundary of the shaded

region.

Fig. 3.2(b) shows the three main variables of the reduced model as functions of time, evaluated

in the middle of the reaction region (x = L/2). The ψC variable increases immediately due to the
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Figure 3.3: Comparison of different models. (a)–(c) use the stress in Eq. (2.47) with the friction term
given by (a) Kozeny-Carman, (b) Hill function, and (c) the ‘biofilm’ term; (d) uses a conventional
multiphase stress T′ in Eq. (3.13) with ξB. The coefficients h are scaled so as to make the three
coefficients comparable in strength. The first two friction terms produce the desired no-slip on the
membrane interface and the third, while affecting the fluid flow, does not generate the desired no-slip
boundary condition. Additionally, the stress and friction combination used in (d), which is usually
employed in multiphase models, does not yield the desired no-slip behavior on the fluid-structure
interface. Reproduced from [36] with permission.
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Figure 3.4: Effect of increasing precipitate thickness. As a percentage of the domain length,
membrane width is (a) 5%, (b) 15%, and (c) 33%. The increasing maximum flow speed is due to
the constant-flux constraint, and is analogous to that what would occur if the precipitate boundaries
and interface conditions were prescribed a priori in a single-phase flow. Reproduced from [36] with
permission.

presence of ψA and ψB. The membrane initially has zero growth rate due to the absence of ψC , and

grows at a slower rate than ψC . This ordering on the growth rates matches our expectations from

the eigenvalue analysis of Section 3.1.1. The qy curve demonstrates the transition from one-channel

to two-channel pipe flow by measuring the normalized value in the middle of the pipe as a function

of time. By comparing qy with θp, one can see the effect of the percolation threshold θ∗s = 0.3. After

the solvent volume fraction declines past this value, the fluid velocity begins to respond strongly

to precipitating membrane.

To be precise, we say a velocity displays “no-slip” behavior when, in the limit as a transition

region between a fluid region (θs = 1) and membrane region (θs = 0) becomes discontinuous (i.e. a

“sharp interface”), the velocity goes to zero as one approaches the interface from the fluid-region.

In the case that the volume fraction is always discontinuous (as in this reduced model), this limit

is achieved as the membrane fully develops, i.e. θs → 0, at the interface. Fig. 3.3 demonstrates the

effect of using different stresses and friction coefficients. Both Figs. 3.3(a,b) demonstrate the desired

no-slip behavior in the membrane limit by using ξKC and ξH , respectively. In Fig. 3.3(c) the effect
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of the friction coefficient ξB is shown. While there is some effect on the flow profile, ξB does not

demonstrate the no-slip condition on the membrane. While the ξB term was developed primarily for

high permeability applications, our framework was developed to capture the transition from purely

fluid behavior, to partially permeable, to a fully-developed impermeable solid. As demonstrated,

this full transition requires either the ξKC or ξH friction coefficient. Fig. 3.3(d) displays the flow

profile when using the multiphase stress tensor typically used in multiphase models:

T′ = ηθf
(
∇vs +∇v>s

)
(3.13)

given in Drew [33], Cogan and Guy [23] as well as the biofilm friction coefficient. Even in long-

time, the model using the above T′ does not produce the desired no-slip at the fluid-membrane

interface. Using T′ with other friction terms produces inconclusive results. It was this behavior

that motivated the authors’ to modify the stress term to the form given in Eq. (2.47), which has

the additional advantage that it allows for a reduction of the momentum equation to the Brinkman

form.

Fig. 3.4 shows three flows with reaction regions of various sizes, and therefore different width of

membranes. The initial flow profiles of all are equivalent, as the reaction has not yet occurred and

no membrane is present. However, as membrane develops, the constant-flux condition requires that

for regions with thicker membranes, the flow velocity must increase in the non-reacting regions to

compensate for the loss of flux in the membrane region. These results demonstrate that, once the

membrane is fully developed, the flow domain treats the membrane portion as a no-slip boundary

and the prescribed constant-flux conditions lead to the expected results from single-phase fluids.

Alternative solution to chemical system. There exists an alternative solution to the

chemostat chemical C concentration ODE. The notable difference of this solution method is that

there is no need to solve Ricatti’s differential equation. As a reminder, the system under consider-

ation is

ψ̇C = a1 − (ψC − a2)θ̇s/θs (3.14)

θ̇s = a3ψCθs. (3.15)

where a1, a2 and a3 are constant parameters. The previous solution method is to use Eq. (3.15) to

transform Eq. (3.14) into a constant-coefficient Ricatti equation, which is exactly solvable. Then,

because the antiderivative to this solution can be expressed using elementary functions, one can

separate Eq. (3.15) to solve for θs exactly.
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The alternative method of solution is that we can take the derivative of Eq. (3.15) to obtain

θ̈s = a3(ψ̇cθs + ψC θ̇s). (3.16)

Plugging in the expression for ψ̇C from Eq. (3.14) allows us to cancel the dependence on ψC and

thus we have a second-order, linear, constant-coefficient expression that can be solved for θs:

θ̈s
a3

= a1θs + a2θ̇s. (3.17)

This is useful because now, given the parameters a1, a2 and a3 we can solve the membrane dynamics

exactly without relying on the chemistry solution. Additionally, knowing θs exactly turns equation

(3.14) into a variable-coefficient linear first-order ODE, which is also solvable. While the end result

is the same, this alternative technique is reported for the interested reader.

3.2 Interpretation of multiphase drag

Until this point, the fluid-structure interactions properties of the model have only been shown to

qualitatively match intuition. The ultimate truth, in any scientific field, is experiment. Experiments

studying drag on porous bodies have been conducted [103, 118, 68, 53], but in this section we take

a different approach. We give a quantitative analysis of the drag through porous bodies using

two different models of porous media – one using our framework, and the other using an “exact”

representation of a porous body as a collection of smaller, impenetrable circles. The goal is to

compare how the drag produced by the current framework agrees with one version of the “true

value”. The key quantity of interest will be drag, as that is something that is easily measurable

from experiment and whose quantitative accuracy is of the utmost importance to those who employ

fluid-structure interaction models.

3.2.1 Benchmark problem

We will analyze the drag on two dimensional porous objects. In order to avoid to Stokes

Paradox [48, pp. 47-49], our domain will be bounded. Specifically, a domain like the one in Fig. 3.5

is considered: a circular object of radius r exists in a channel of length 6 and height 2. Parabolic

inflow comes from the left and exits the domain on the right, while the top and bottom are no-slip

walls. We first must validate the numerical methods by considering the full circle as an impenetrable

solid, while later during the real test the circle will be a porous object. The inflow condition is

parabolic:

u(y) = 1− y2, (3.18)
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chosen so that the maximum velocity at the inflow is 1; specifically we assume µ = 1 and the

pressure gradient have been chosen such that this condition occurs.

Figure 3.5: Benchmark domain for drag analysis. The circle (shaded) with radius r will either
be represented by a porosity field (present framework) or by a collection of small “filling circles”
(boundary integral equations).

Different numerical methods are used to simulate each model of porous media: a finite element

method (FEM) using open-source software package eFEMpart [37] for the current framework, and

a boundary integral method using a private package designed by Bryan Quaife and Nick Moore

[84, 21] for the “exact” porous body composed of smaller circles. To validate the numerical methods,

the radius of a single, impenetrable circle is fixed at 0.125 and the computed value of the drag on

the circle, for a fixed inflow condition, is used as the quantity for comparison as the numerical

domain is refined. Then, once the numerical packages are validated, a comparison for porous media

will be conducted. First, a method for computing drag on multiphase objects is described.

3.2.2 Indirect method for computing drag

The drag D on the surface is defined by the contour integral

D =

∫
C
σ · n ds (3.19)

where C is the circle’s boundary. While that definition works for classical bodies with clearly

defined interfaces, one runs into difficulties trying to apply it directly to “porous objects” defined

within the framework. Specifically, there is no interface in our multiphase approach. Therefore, we

give here an indirect approach to calculate the drag on multiphase bodies in Stokes flows. The drag

on a generic body can be calculated by integrating the traction on the channel walls, inflow, and

outflow, as opposed to the body itself; this is similar but not equivalent to the method of measuring
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the pressure drop across a channel with the body and subtracting off the pressure drop that would

occur without the body.

To begin the derivation, take Stokes equation ∇ · σ = 0, where σ = −pI + 2µD, integrate over

the domain Ω, and use the divergence theorem to obtain∫
Γ
σ · n ds = 0 (3.20)

where n is the unit normal vector – that points outside the domain and into our circle – and

Γ = Γin ∪ Γout ∪ Γwall ∪ Γobj (see Fig. 3.5 for boundary indicators). The drag on the body is

traditionally defined as

D = −
∫

Γobj

σ · n ds, (3.21)

where the negative sign is due to our convention having n point into the object. We can represent

the drag on the body by a surface integral over the boundary

D =

∫
Γwall

σ · n ds+

∫
Γin

σ · n ds+

∫
Γout

σ · n ds. (3.22)

The convenience of this equation comes from the fact that the geometry of the inner body has been

completely removed from the calculation, and we are computing line integrals over straight lines

along our axis coordinates. This technique is applicable using the current framework as long as

the fluid volume fraction is unity on the boundary – in which case, our framework is equivalent

to Stokes equations. As mentioned previously, this method will be even more convenient in the

context of multiphase flows because the definition of the “body boundary” itself is unclear.

Example. As a sanity check, we compute the drag on a non-existant body; the drag should

be zero. The velocity solution for an empty channel is given in in Eq. (3.18) with corresponding

pressure solution p = 2(3 − x). The symmetric rate-of-strain tensor for the channel flow can be

written in cartesian form as

D =

[
0 −y
−y 0

]
.

Now all that is needed is to compute the drag on each of the four faces of the outer boundary.

Remember, σ = −pI + 2µD with µ = 1 for this benchmark. At the boundaries one obtains:∫
Γin

σ · n ds =

[
−24

0

]
,

∫
Γout

σ · n ds =

[
0
0

]
,

∫
Γwall

σ · n ds =

[
12
36

]
+

[
12
−36

]
=

[
24
0

]
(3.23)

so that the total drag on our “imaginary” circle, via Eq. (3.22), is zero, just as we had hoped.

We have learned that the drag on the walls cancels the drag on the inflow, while the outflow is

44



Table 3.1: Benchmark Comparison of the errors on a circle in a channel. The error refers to the
relative error; the FEM error is computed by using the highest value from BIE as the “exact”
value. For this benchmark, a no-slip condition on the circle is provided to the multiphase flow –
this table does not reflect the capabilities of our model framework, only verifying that the code
works as expected for a benchmark problem.

Boundary Integral Finite Elements

dofa drag error dof drag error
8 10.4754984115 4.9e-7 1252 10.74769495 2.6e-2
16 10.4755035934 1.7e-9 2584 10.50925591 3.2e-3
32 10.4755035661 9.1e-10 4732 10.45909286 1.6e-3
64 10.4755035809 5.1e-10 10032 10.42472542 4.8e-3
128 10.4755035784 2.6e-10 30720 10.47527272 2.2e-5
256 10.4755035777 2.0e-10 113136 10.47627087 7.3e-5
512 10.4755035756 - 425856 10.47535576 1.4e-5

aThe dof in the BIE refers to the discretization of the circle – it does not include the discretization of the outer
boundary.

stress-free. Therefore, to compute the drag on the porous circle, one only needs to compute line

integrals on the outside of the domain.

To validate the numerical methods we will use, a domain convergence study is conducted; the

results are given in Table 3.1. One can see that the boundary integral formulation is much more

accurate for all discretization levels; this is due to the spectral convergence properties of the the

boundary integral formulation for closed, smooth boundaries. The finite element formulation, while

being overall less accurate, shows the expected first-order convergence due to the pressure variable

being represented by first-order finite element family; see Sec. 4.2 for a complete description of

the FEM discretization. To summarize, this says that the numerical methods are validated in the

measurement of drag. As a visual validation of our method, we see in Fig. 3.6 a visualization of

the flow field for a flow around a “solid” circle, both using the multiphase framework and Stokes

equations. In the multiphase model, the circle is represented by a discontinuous volume fraction

scalar field, and the flow reacts accordingly, while in (b) a circle must be explicitely built into the

mesh so that a no-slip boundary condition may be applied.

3.2.3 Porous circle problem

Now that both numerical methods are validated, they can be used to investigate the real purpose

of this section. We assume that we are given the geometry files for the “filling circles” representation
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(a) (b)

Figure 3.6: Comparison of flow fields using our model framework versus a classical no-slip boundary
condition. Color represents the magnitude of the velocity field, and both images use the same color
scaling. Comparison of the flow generated from (a) our multiphase Brinkman equation and (b)
classical Stokes flow over a circle. In the multiphase model, the circle is represented by a volume
fraction scalar field, while in (b) a circle must be explicitely built into the mesh so that a no-slip
boundary condition may be applied.

of a porous body by a benevolent god.1 We will examine only two parameters: volume fraction and

drag on the body. For the “filling circle” representation of the porous object, due to the random

distribution of these bodies, we will expect some variation in the drag result. See Fig. 3.7 for

examples of porous media of various volume fractions. For the simulation that uses our framework,

we assume the surface is discontinuous.

Drag comparisons. We first run the simulations on the “filling circles” geometries where

the drag will be computed using the boundary integral method. Results are shown in Fig. 3.8(a).

We immediately notice that there is wide variability, for a given volume fraction, in the drag on a

“porous circle” composed of 40 filling circles. One notable observation is that the drag, even for

extremely small volume fraction, is still about 90% of the drag on a solid circle of radius 0.125.

While this does not agree with our intuition about how drag operates on objects, we must remember

two things: (1) we are computing the drag in a two-dimensional setting, where the drag on a single

object decays according to the inverse log of the shrinking radius [84, see Eq. (66)], which we can

consider a proxy for volume fraction and (2) we have many different bodies, not a single body, so

there is a compounding effect of many, different bodies affecting the drag on each other.

For the multiphase model, we look at Fig. 3.8(b). One can see that the drag is a smooth

function of volume fraction, and approximately equals the drag on a solid body when the volume

1CircGeometry.jl was developed for this purpose. See Appendix C for details on the full algorithm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.7: Examples from porous circles with volume fractions equal to (a) 5% (b) 10% (c) 15%,
(d) 20% (e) 25% (f) 30% (g) 35% (h) 40% (i) 45% (j) 50% (k) 55% (l) 60%. Note that the actual
volume fractions (cumulative area of filling circles divided by area of outline) are not exactly these
values, but only approximate, due to the filling circle radii being taken from a random distribution.
See Appendix C for more details.

fraction of the solid is 1 (i.e. the precipitate is fully developed). With this comparison, it is clear

that, at least in two dimensions, the volume fraction interpretation of the precipitate membrane

as being composed of small filling circles is incorrect. However, we do see that (1) the drag on the

porous body varies smoothly from zero volume fraction (no circle present) to unity volume fraction

(porous object is completely solid), and (2) the drag goes to the correct limits (approximately)

in either case. While the quantitative accuracy of our multiphase model regarding porous objects

is therefore in question, the same accuracy for fully-developed objects looks to be quantitatively

accurate. This is excellent news, as it means that, once a precipitate it fully developed, the drag it

exerts on a fluid behaves exactly like that of a solid object imposed a priori.

This section has validated the current model as a quantitatively accurate model for solids, but

the quantitative accuracy for modeling drag on porous bodies is still in question. We also detailed

an indirect method for computing the drag on a multiphase body, and demonstrated that we should
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(a) (b)

Figure 3.8: Drag on porous body versus volume fraction. The “porous body” is (a) composed of 40
“filling circles” and (b) represented by a volume fraction scalar field in our domain with ξ∗ = 100,
θ∗fluid = 0.6. The disperate scales of the vertical axis indicates that we should not interpret our
porous objects as being composed of small circles, at least in two-dimensions.

not consider the multiphase solid material as being composed of small “filling circles”, at least in

two dimensions. With the validation of the model for immobile solid bodies behind us, we now

turn to how the framework can be used for applications where a slow-moving solid with complex

rheology, such as occurs in geophysical and micro-scale biological phenomena.

3.3 Particles within a step channel

To see some simple effects of the discrete particle model, we demonstrate four separate simu-

lations of a group of particles within a step channel. First, the effect of velocity only is shown –

this means that the particles act as tracers, simply following the flow field. Then, the flow field is

turned off, but the effects of cohesion, adhesion, and gravity are turned on. This demonstrates how

the particles clump and interact with walls realistically. Then, all forces are turned on but only a

one-way coupling is included; the fluid affects the particles, but there is no “solid volume fraction”

to affect the velocity field in return. Finally, the two-way coupling in included to show how the

velocity field within the step channel is affected by the presence of the porous media, and in turn

this affects the dynamics of the particles. This final simulation demonstrates the full power of the

discrete particle approach.

We will now describe the general algorithm that is used in the “full” case that couples fluid

and structure. We begin in all cases by initializing random circles inside a domain, along with a
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description of the walls. See Appendix C for a more detailed explanation of these steps, specifically

the packages CircGeometry.jl and StokesParticles.jl.

Before the time-stepping routine of the simulation begins, we generate two cell lists. One cell

list is to represent the particle positions for efficient computation of cohesion force, and the second

cell list is for finite element mesh nodes for efficient computation of the seepage force. Once these

cell lists are initialized, the particle cell list needs to be updated at each time step (because the

particles are moving, and therefore might change cells), but the FEM cell list does not need to be

updated. The fluid velocity field, being represented on a finite element mesh, must be interpolated

for each particle position – see Appendix B for a description of a scheme to do this efficiently.

The walls in Figs. 3.9–3.11 are represented with finite width, which is apparent in the dynamics

as well. Once the wall and particle initial conditions are given, we then solve for the initial fluid

flow. Flow is coming into the left and exiting the right on the channel; the classical step flow is

represented in Fig. 3.10 where we observe the particles acting as tracers for the fluid velocity. With

only seepage force turned on, the particle velocity is simply proportional to the fluid velocity.

(a) (b) (c) (d)

Figure 3.9: Particle dynamics for cohesion, adhesion and gravity, where fluid flow is not incor-
porated. The particles, while only being represented as points, exhibit concrete radii and allow
themselves to pile up next to and on top of walls. Some particles are colored for convenience.

At each time step, we compute the gravity, cohesion, adhesion, and seepage forces on the

particles, and use Eq. (2.60) to move the particles in time. In theory, we should be updating

the fluid velocity field at each time step, as they are coupled, but in practice the particles move

so slowly with each time step (a necessary condition of the stiff nature of the system due to the

cohesion force), we only update the velocity field every 100 time steps. The reason for this is

that re-building the brinkman system (which is necessary because the solid volume fraction field

is constantly changing) and solving the resulting linear system would be too costly for the small
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amount of accuracy that would be gained. It is hoped that, in the future, we may make this process

more efficient by building an iterative solution scheme that uses past solutions as an initial condition

starting point – which would necessarily be faster than solving the system directly every time, as

well as build a faster way to update the system that is only changing by small perturbations to the

variable coefficient.

(a) (b)

(c) (d)

Figure 3.10: Particle dynamics for only fluid flow. In this simulation, particles behave simply as
volumeless tracers without any steric interactions. They follow the fluid flow over the step.

The end result of this algorithm is a method for using discrete particle dynamics and, impor-

tantly, discrete description of forces coupled to a continuum description of flow. This algorithm will

be particularly important for our scientific application of modeling sinkhole formation in Chapter

5. More generally, this algorithm can be applied to any scientific problem where the a solid with

complex rheology is interacting with a surrounding fluid flow. We note the important missing piece

so far has been that we have not yet coupled together our reaction, phase-change mechanism to the

discrete particles. We have only made use of the discrete-to-continuum operator to map the (al-

ready existing) discrete particles onto a continuum field representing the volume fraction; we have

not yet used the continuum-to-discrete operator that would allow one to fully take advantage of our

model framework. In the next section, we give a simple validation of an algorithm to implement

this continuum-to-discrete oprator.
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(a) (b)

Figure 3.11: Particle dynamics for (a) one-way fluid coupling, including gravity, cohesion and
adhesion and (b) all forces, including a two-way fluid-particle coupling. The cohesion of the particles
allows clumps to move coherantly as a single (or multiple) bodies. In (a) the top of the initial clump
feels the full force of the fluid, and is pushed over the step; the bottom half of the initial clump is
overtaken by gravity and falls before reaching the step. In (b) the entire initial clump is overtaken
by gravity, unlike Fig. 3.11, because the fluid velocity inside the clump is significantly less due to
the permeability of this clump affecting the fluid velocity

3.4 Benchmark for continuum-to-discrete operator

This section provides a validation test for the continuum-to-discrete operator G∗ defined in

Sec. 2.3. Neither of the two-dimensional problems in chapters 4 or 5 will require this operator, so a

one-dimensional test will suffice as a proof-of-concept. We begin by describing the gradient descent

algorithm that is used to optimize the cost function in Eq. (2.65), as well as an analytic description

of its gradient with respect to the parameters. This algorithm is tested on an example where the

field F is itself generated from a single particle undergoing the forward transform G. Then, G∗

is applied to a step function to see how it performs in a realistic context. Because the current
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framework conserves mass, any error resulting from an application of G∗ violates this principle – in

practice, one must consider how much mass loss due to numerical error is acceptable.

3.4.1 Gradient descent algorithm

The gradient descent algorithm is a foundational algorithm for optimization problems [90].

While it has many variations, only its simplest form will be considered here, which is sufficient for

benchmark purposes. Needless to say, use of the operator G∗ in production-level code would require

a more efficient optimization algorithm.

For a cost function J , parameters θn, and “learning rate” α, the optimization algorithm is to

repeatedly apply the following formula:

θn+1 ← θn − α∇J(θn) (3.24)

where the superscript n refers to the step index. For a sufficiently small α, and certain constraints

on J , this algorithm is guaranteed to converge. Use of this algorithm requires the gradient of J

with respect to θ. While it is possible to do this numerically using, for example, a finite difference

method, that will introduce unnecessary errors into the calculation that could slow or even prevent

convergence. Because J is analytically defined, we can find it’s gradient analytically.

Remember that θ is essentially a container for (in one spatial dimension)N points xi, N strength

parameters si, and one “spreading” parameter h. To compute the gradient of J with respect to θ,

we need to take the partial derivative of J with respect to each of these components. Each of these

partial derivatives takes the same form:

∂J

∂�
= 2

∫ b

a

[
G(x, s, h, y)− F (y)

] ∂G
∂�

dy, (3.25)

where � ∈
{
x1, . . . , xN , s1, . . . , sN , h

}
and ∂G

∂� are defined to be

∂G
∂xj

= − 2

h2
(xj − y) exp

(
−(xj − y)2

h2

)
, (3.26a)

∂G
∂sj

= exp

(
−(xj − y)2

h2

)
, (3.26b)

∂G
∂h

=
2

h3

N∑
i=1

si(xi − y)2 exp

(
−(xi − y)2

h2

)
. (3.26c)

In practice, each of these partial derivatives must be evaluated at each point y in order to evaluate

the integral. So, while this algorithm will give the desired result, it is computationally expensive

to run in practice.
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3.4.2 Single particle transform

For the most straightforward test, the inverse Gauss transform G∗ should undo the effect of

the forward Gauss transform G. To test this, we take a single particle defined by its center (x0)

and radius (combination of s0 and h). We then run the above optimization problem from an

initialization θ0 to recover these parameter values. The initial conditions will be x0 = −0.3, s0 = 0,

and h = 0.1. The “true values” to obtain through optimization are x∗0 = 0.7, s∗0 = 1.2, and

h∗ = 0.5. With a learning rate of α = 0.2, the gradient descent algorithm takes 166 iterations

until convergence, where we define convergence to be the iteration where J changes by less than

1× 10−8. This convergence is visually depicted in Fig. 3.12.

(a) (b)

Figure 3.12: Convergence for single particle continuum-to-discrete transform. (a) Physical space
convergence and (b) cost function for increasing iterations both demonstrate that the convergence
experiences a “transition region” where, before and after, convergence is slow.

As the number of particles that are used to generate the field F increases, the gradient descent

algorithm becomes more and more computationally expensive – the learning rate α must shrinks

more than linearly with the increasing number of particles. This reflects the fact that a simple

gradient descent algorithm is used. To compute G∗ on a field generated by hundreds of particles,

one should first choose a better optimization algorithm. Now that G∗ has been have shown to work

in principle, next it is applied to a field F that is not generated via G.

3.4.3 Transform of step function

For the purpose of the eventual application of G∗ to problems using the model framework, we

need to know how it performs on a field not generated from a Gauss transform of particles. This is
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the type of situation that will arise in the context of the current framework; a precipitate field will

form from a reaction and a transform to discrete particles will need to occur before the discrete

forces description can be used as a model of a solid with complex rheology. For this simple test,

we will examine how well G∗ performs on a step function:

S(x) =

{
1 −1

2 < x < 1
2

0 otherwise
. (3.27)

Figure 3.13: N particles attempting to ap-
proximate a step function via the inverse
transform G∗.

This function is one discrete representation of a

Dirac delta distribution, which approximately rep-

resents the precipitation that will initially occur at

a single point. The algorithm as describes does a

bad job of approximating the step function – see

Fig. 3.13 for one attempt with 20 particles. In addi-

tion to suffering from a manifestation of the well-

known Gibb’s phenomena, it also converges with

negative values of the strength parameter si which

means the interpretation of the parameter θ loses

meaning relating to particles of radius proportional

to si and h. While the efficiency of G∗ applied to

arbitrary fields F is beyond the scope of this dissertation, one way to improve this algorithm would

be to define a different cost function that was regularized such that it become extremely large

whenever si were negative.

To conclude, while the continuum-to-discrete operator G∗ works in principle for obtaining θ for

fields F that are themselves generated with a Gauss transform G, it performs poorly in practice.

In addition to the simple gradient descent algorithm scaling poorly for field F generated with large

N , the inverse does a bad job of approximating generic fields F which is the entire point of this

operator in the context of this dissertation. Therefore, additional work will need to be done in

order to employ this method in production-level simulations.
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Part II

Applications
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CHAPTER 4

PRECIPITATION WITHIN A MICROFLUIDIC

CHAMBER

A specific precipitate reaction within a microfluid device was given in the introduction to this

dissertation. This chapter is devoted to using the current model framework to numerically simulate

this experiment, represented by Fig. 4.1. The finite element method (FEM) is used to discretize

the PDE system. An operator splitting technique is used to efficiently handle multiple timescales.

In particular, the reaction operation is approximated by a quasi-steady assumption; this allows one

to resolve the reactions analytically with asymptotic accuracy, and the simulation step size can

be orders of magnitude larger. The momentum of the fluid in the low Reynolds number regime is

resolved via a time-independent, variable-coefficient Brinkman system which, as derived in Chapter

2 and validated in Chapter 3, provides a model for this experimental setup. Simulation software is

provided open-source for interested readers; see Appendix C.

Figure 4.1: Microfluidic setup for precipitate
reaction. Ionic species enter the tubes on the
left, and exit the channel on the right. Re-
produced from [109] with permission.

The rise of microfluidic devices offers an eco-

nomical approach for chemical experiments at the

micrometer scale. They have been used to explore

precipitation reactions which characteristically pro-

duce a fluid-impeding structure. These experiments

model, for example, the conditions on primordial

earth necessary to create the first “life” molecules

[31, 108, 110], as well as so-called chemical gardens

[8]. Although microfluidic experiments have shown great success in analyzing chemical and biologi-

cal samples [30, 119], all possible permutations of domain geometry, chemistry, and flow conditions

creates a parameter space that is prohibitively expensive to probe experimentally. Numerical sim-

ulation of a mathematical model offers an inexpensive alternative to experiments, and can guide

researchers towards interesting parameter regimes while avoiding a costly trial-and-error approach.

The focus of this dissertation has been to derive a novel model framework applicable to precipi-

tation reactions in microfluidic devices. This model conserves mass throughout the entire reaction,

and preserves the fluid-structure interaction behavior resulting from the formation of precipitate
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solids. In the present chapter, we develop an efficient numerical discretization scheme and imple-

mentation to simulate this PDE system. The algorithms are valid in either two or three spatial

dimension, although only two-dimensional domains were simulated for the results. This simulation

framework will be useful to experimenters who desire a model of their system that is quicker and

cheaper to run than wet-lab experiments.

This chapter proceeds as follows: Sec. 4.1 explicitely states the model to be simulated using the

framework from Chapter 2. Sec. 4.2 describes the numerical algorithms, including the algebraic

reaction equations, and the FEM discretization of the PDEs; rigorous validation of all schemes

is included. Sec. 4.3 shows simulations in various realistic microfluidic geometries and parameter

regimes.

4.1 Model and timescale separation

The situation we consider is a precipitation reaction occuring within a microfluidic chamber

where the Reynolds number is negligible. Specifically, aqueous species A and B react to form an

aqueous product C, which precipitates to form a solid. The chemistry stoichiometry is given by

aA(aq) + bB(aq)→ cC(aq), C(aq)→ C(s) (4.1)

where the first, purely aqueous, reaction occurs within the solvent, and the second reaction describes

the precipitation of the product from liquid to solid. The model is a multiphase PDE system that

takes into account the spatial and temporal dynamics of all constituents. Note that the model

framework can handle more complex reaction stoichiometry, as outlined in Sec. 2.1.2, but only the

simple case is simulated here.

The mathematical system under consideration is a multiphase PDE system where advection-

diffusion-reaction (ADR) equations model the aqueous chemistry and a variable-coefficient Brinkman

system models the fluid-structure dynamics. We will first go through a nondimensionalization and

timescale separation so that the fastest timescale does not place a constraint on the simulation time

step size.

4.1.1 Nondimensionalization

Considering realistic parameter values for the above system, one discovers that there are three

disparate timescales of the problem; from fastest to slowest, they are: reaction, advection, and

diffusion. Because the reaction dynamics are the fastest timescale, we simplify our model consid-

erably by making a quasi-steady state reaction assumption, described in detail in Sec. 4.1.2, that
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allows mass transfer between components of the systems to be handled algebraically, as opposed

to solving nonlinear ADR equations. This assumption still preserves a fundamental quality of the

model: conservation of mass.

Figure 4.2: Schematic of variables and parameters,
with a top-down view of the channel. Precipitate
forms in the middle, which affects the surrounding
fluid flow.

The first step is to nondimensionalize

the governing equations from the model

framework of Chapter 2. The main chem-

istry variable is ψ∗i (x, t) for the molarity

of chemical species i in position x at time

t. It is important to remember for physi-

cal interpretation that ψ∗i is the number of

i molecules per unit fluid volume, rather

than unit total volume. This distinction

is not always recognized in the literature,

although it is important for phase-change

reactions; the “fluid” volume does not necessarily equal the “total” volume. Additionally, physical

processes such as reaction rates are proportional to a species’ molarity, not concentration per unit

total volume. In dimensional form, the governing system is given by [36]:

θs
∂ψ∗A
∂t∗

= ∇∗ ·
(
κ∗A∇∗ψ∗A − ψ∗Aq∗

)
− arθsψ∗Aψ∗B + ψ∗A

∂θs
∂t∗

(4.2a)

θs
∂ψ∗B
∂t∗

= ∇∗ ·
(
κ∗B∇∗ψ∗B − ψ∗Bq∗

)
− brθsψ∗Aψ∗B + ψ∗B

∂θs
∂t∗

(4.2b)

θs
∂ψ∗C
∂t∗

= ∇∗ ·
(
κ∗C∇∗ψ∗C − ψ∗Cq∗

)
+ crθsψ

∗
Aψ
∗
B + ψ∗C

∂θs
∂t∗
− α∂θs

∂t∗
(4.2c)

θs + θs = 1 (4.2d)

∂θs
∂t∗

= βψ∗CθsH(ψ∗C − ψ′C)/ρm (4.2e)

η∇∗2q∗ − β∗(θs)q∗ = θs∇∗p∗ (4.2f)

∇∗ · q∗ = 0 (4.2g)

where α = (ρp − ρs)/MC and * superscript denotes the dimensional form of a variable. The

κ∗i can be written as κ∗i = κ0
iκi(θs) to denote both a dimensional, characteristic “diffusivity”

κ0
i as well as a nondimensional, functional dependence on volume fraction. Note that ψ′ is the

precipitation concentration threshold, and is dimensional. Using the standard MLT (mass, length,
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time) formulation for dimensional analysis, the units of all of the variables and parameters are:

[
θi
]

= 1,
[
ψi
]

= L−3,
[
q
]

= LT−1,
[
p
]

= ML−1T−2,[
κi
]

= L2T−1,
[
a, b, c

]
= 1,

[
r
]

= L3T−1,
[
β
]

= MT−1,[
α
]

= L−3,
[
ρi
]

= ML−3,
[
η
]

= ML−1T−1,
[
h
]

= ML−3T−1.

We introduce the nondimensional variables

ψi =
ψ∗i
αψ

, q =
q∗

αq
, p =

p∗

αp
,

t =
t∗

αt
, x =

x∗

αx
.

Note that αi are dimensional, characteristic constants, and are unrelated to the dimensional pa-

rameter α in our system. We also note the following derivative quantities:

∂

∂t∗
=

1

αt

∂

∂t
, ∇∗ =

1

αx
∇, ∇∗2 =

1

α2
x

∇2 (4.3)

Plugging these into the above system and multiplying through by αt one obtains

θs
∂ψA
∂t

=
αt
α2
x

κ0
A∇ · (κA(θs)∇ψA)− αqαt

αx
∇ · (ψAq)− αψαtarθsψAψB + ψA

∂θp
∂t

, (4.4a)

θs
∂ψB
∂t

=
αt
α2
x

κ0
B∇ · (κB(θs)∇ψB)− αqαt

αx
∇ · (ψBq)− αψαtbrθsψAψB + ψB

∂θp
∂t

, (4.4b)

θs
∂ψC
∂t

=
αt
α2
x

κ0
C∇ · (κC(θs)∇ψC)− αqαt

αx
∇ · (ψCq) + αψαtcrθsψAψB + ψC

∂θp
∂t
− α

αψ

∂θp
∂t

, (4.4c)

θs + θp = 1, (4.4d)

∂θp
∂t

=
αtαψβ

ρp
ψCθsH

(
αψψC − ψ′C

)
, (4.4e)

∇2q− α2
x

η
β∗(θs)q =

αpαx
ηαq

θs∇p, (4.4f)

∇ · q = 0. (4.4g)

Note that there are roughly three components to the above ADR equations. Realistic parameter

values suggest that both reaction processes occurs orders of magnitude faster than either advection

or diffusion processes. This implies that there are two timescales. To make the dependence of

the variables on these two timescales explicit, we first choose our timescale αt to be on the order

the reaction, then create a new “slow” timescale, τ , which will capture the slower advection and

diffusion processes. In the next section, we carry out this procedure in great detail.
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4.1.2 Timescale separation

We first note that the momentum equations (4.4f) and (4.4g) are independent of time, so we do

not need to consider them in the following analysis. To simplify things, we can substitute (4.4e)

into (4.4a),(4.4b),(4.4c) to simplify the number of equations we need to consider in our timescale

analysis. Additionally, without loss of generality, we do not consider there to be any precipitation

threshold, i.e. ψ′C = 0, so that we drop the Heaviside function. To choose our reaction timescale,

let αt = (αψr)
−1 while assuming that β ≈ rρm to obtain

θs
∂ψA
∂t

=
αt
α2
x

κ0
A∇ · (κA∇ψA)− αqαt

αx
∇ · (ψAq)− aθsψAψB + ψAψCθs, (4.5a)

θs
∂ψB
∂t

=
αt
α2
x

κ0
B∇ · (κB∇ψB)− αqαt

αx
∇ · (ψBq)− bθsψAψB + ψBψCθs, (4.5b)

θs
∂ψC
∂t

=
αt
α2
x

κ0
C∇ · (κC∇ψC)− αqαt

αx
∇ · (ψCq) + cθsψAψB + ψ2

Cθs −
α

αψ
ψCθs. (4.5c)

Now let ε = αqαt/αx be a small parameter (ε � 1) to reduce the nondimensional coefficient for

advection. Then, we can also represent the nondimensional diffusion coefficient in terms of ε by

introducting a new nondimensional parameter called the Péclet number

Pei =
αqαx
κ0
i

(4.6)

which represents the relative effects of advection and diffusion. The system is now

θs
∂ψA
∂t

=
ε

PeA
∇ · (κA(θs)∇ψA)− ε∇ · (ψAq)− aθsψAψB + ψAψCθs, (4.7a)

θs
∂ψB
∂t

=
ε

PeB
∇ · (κB(θs)∇ψB)− ε∇ · (ψBq)− bθsψAψB + ψBψCθs, (4.7b)

θs
∂ψC
∂t

=
ε

PeC
∇ · (κC(θs)∇ψC)− ε∇ · (ψCq) + cθsψAψB + ψ2

Cθs −
α

αψ
ψCθs, (4.7c)

so that as long as Pei is not large, there are only two timescales in the problem. To make this

formal, let τ = εt and expand the time derivatives using the multivariable chain rule, and group by
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orders of ε to obtain

O(1)


θs
∂ψA
∂t

= −aθsψAψB + ψAψCθs

θs
∂ψB
∂t

= −bθsψAψB + ψBψCθs

θs
∂ψC
∂t

= cθsψAψB + ψ2
Cθs +

α

αψ
ψCθs

(4.8)

O(ε)



∂

∂τ

(
θsψA

)
=

1

PeA
∇ · (κA(θs)∇ψA)−∇ · (ψAq)

∂

∂τ

(
θsψB

)
=

1

PeB
∇ · (κB(θs)∇ψB)−∇ · (ψBq)

∂

∂τ

(
θsψC

)
=

1

PeC
∇ · (κC(θs)∇ψC)−∇ · (ψCq)

(4.9)

Figure 4.3: Schematic
representing idea that aque-
ous chemical dynamics
reach steady state on every
reaction-diffusion time step
∆τ .

This is form is where one can apply the quasi-steady assumption,

such that the O(1) equations can be sufficiently approximated by

steady states after undergoing the reaction to completion. TheO(ε)

equations on the τ timescale will be numerically simulated. The

practical effect is that only one timescale needs to be included in

the simulation, and three nonlinear, coupled equations have become

uncoupled and linear which has considerable numerical benefits.

The nondimensional variable-coefficient Brinkman equation is

∇2q− β(θs)q = θs∇p (4.10a)

∇ · q = 0 (4.10b)

where β is the reciprocal of the effective viscosity (which includes

the friction relation), and p is the spatially-averaged pressure which has already been rescaled by

the (negligible) Reynolds number.

4.2 Numerical discretization

The numerical framework discretizes a domain into finite elements. We first describe the algo-

rithm that allows us to handle the reaction operations algebraically, as described theoretically in

the previous section. Next the solution of the advection-diffusion differential equations is described.

Finally, the method for simulating a variable-coefficient Brinkman equation is detailed. For the

FEM discretizations, we provide validation using the method of manufactured solutions.
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4.2.1 Quasi-steady reaction

Algorithm 1: aqueous_reaction

input : {ψni }, {Mn
i }, a, b

M←MAψ
n
A +MBψ

n
B +MCψ

n
C ;

if ψnA/a ≤ ψnB/b then

ψ
n+1/2
A ← 0;

ψ
n+1/2
B ← ψnB −

b
aψ

n
A;

ψ
n+1/2
C ← 1

MC

(
M−MBψ

n+1/2
B

)
;

else

ψ
n+1/2
A ← ψnA −

a
bψ

n
B;

ψ
n+1/2
B ← 0;

ψ
n+1/2
C ← 1

MC

(
M−MAψ

n+1/2
A

)
;

end

output:
{
ψ
n+1/2
i

}

As stated previously, and formally derived in

4.1.2, the reaction occurs orders of magnitude

faster than any other process. This allows the

Quasi-Steady State Reaction (QSSR) assumption

to be made. Under this assumption we can make

the approximation that, within each finite time

interval ∆τ , the reaction at each point in space

goes to completion (see Fig. 4.3). In other words,

all of the mass from aqueous chemicals A and

B react into chemical C mass, and then (if the

precipitation threshold is exceeded) precipitate

mass. The obvious advantages of this approx-

imation is that only one timescale needs to be

simulated, and that the nonlinear reaction terms can be handled algebraically, instead of being

solved as a part of the differential equation system. The final algorithm is given in pseudo-code in

Alg. 3.

First, we must determine whether the reaction occurs at all. To do this, determine whether

there is any solid volume fraction; pre-existing precipitate acts as a “nucleation site” whose presence

overrides the threshold requirement. If there is no precipitate, then one must further check whether

the ψC exceeds its precipitation threshold. If either of the above conditions are satisfied, proceed

with the reaction calculation.

To perform the calculation, one must determine the limiting reagent. Compare the values of

ψA/a and ψB/b; the smaller quantity is the limiting reagent. To simplify the following derivation,

we will assume that A is the limiting reagent, i.e. ψA/a ≤ ψB/b. The algorithm for the case

that B is the limiting reagent follows by symmetry. We now summarize the derivation. Because

A is the limiting reagent, and we have made the QSSR assumption, there will be no A molecules

after a time step. This initial number of molecules of A will determine the number of B molecules

that undergo reaction, adjusting for stoichiometry. Finally, the combined mass from A and B that

undergoes reaction will eventually become precipitate mass. In summary, because we make the

QSSR assumption, our problem is accounting for “mass before” and “mass after” the time step

without worrying about the intermediate dynamics. See Alg. 1 for these steps listed in pseudo-code.
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Algorithm 2: precipitate_reaction

input : {ψni }, {θni }, {Mi}, {ρi}, a, b

∆ρ← ρp − ρs M←
∆ρ θnp + (MAψ

n
A +MBψ

n
B +MCψ

n
C)θns ;

if ψnA/a ≤ ψnB/b then

ψn+1
A ← 0;

φn+1
B ← (ψnB −

b
aψ

n
A)θns ;

ψn+1
C ← 0;

θn+1
p ← (M−MBφ

n+1
B )/∆ρ;

ψn+1
B ← φn+1

B /(1− θn+1
p )

else

φn+1
A ← (ψnA −

a
bψ

n
B)θns ;

ψn+1
B ← 0;

ψn+1
C ← 0;

θn+1
p ← (M−MAφ

n+1
A )/∆ρ;

ψn+1
A ← φn+1

A /(1− θn+1
p )

end
θn+1
s ← 1− θn+1

p ;

output:
{
ψn+1
i

}
,
{
θn+1
i

}

Now we describe the conversion of aqueous

mass to precipitate mass; pseduo-code is given

in Alg. 2. First, we introduce the notation

φi = ψiθs for the number of molecules of i per

unit total volume. This will allow us to think

about the number of molecules undergoing reac-

tion, without worrying about the phase dynam-

ics (i.e. volume fraction changes). In words, we

know the variables at time τn, and wish to know

the variables ψn+1
A , ψn+1

B , ψn+1
C , and θn+1

s at time

τn+1 = τn+∆τ . Immediately, we know ψn+1
A = 0

because A is the limiting reagent, and ψn+1
C = 0

because all reactions proceed quickly enough to

wind up as membrane without any intermediate

step, within the discrete time step taken in a sim-

ulation.

Therefore, we really only need to solve for ψn+1
B and θn+1

s . Equivalently, of course, we could

find θn+1
p . In words, we know that

moles of A lost

a
=

moles of B lost

b
,

and

mass of A lost + mass of B lost = mass of precipitate gained.

We know that, because A is the limiting reagent and the reaction proceeds until A is gone, the

number of moles of A lost is simply the initial amount, i.e. φnA. The moles of B lost is the difference

in moles between time steps, or φnB − φ
n+1
B . Therefore we can write Eq. (4.2.1) as

φnA
a

=
φnB − φ

n+1
B

b
(4.11)

which we can solve for our unknown:

φn+1
B = φnB −

b

a
φnA. (4.12)

So now our job is to find the amount of mass being transferred, and then we will be able to work

backwards to find θn+1
p . To do this, we have a simple accounting where mass before equals mass

63



after. Or, written out,

ρsθ
n
s + ρpθ

n
p +

∑
i

Miψ
n
i θ

n
s = ρsθ

n+1
s + ρpθ

n+1
p +

∑
i

Miψ
n+1
i θn+1

s .

where ρs and ρp are the mass densities of the pure fluid and solid, respectively. Knowing that

ψn+1
A = ψn+1

C = 0, we can use Eq. (4.12) to obtain

θn+1
p =

J −MBφ
n+1
B

ρm − ρp
, J = (ρm − ρp)θnp + (MAψ

n
A +MBψ

n
B +MCψ

n
C)θns (4.13)

Note that this reaction means we cannot have ρm = ρp. Does this make physical sense? Yes,

because our model assumption is that the membrane material is composed of sequestered solvent

and precipitated chemicals. Therefore, the mass density of the solvent will always be more than

the mass density of the membrane. If they are equal, then there are no chemicals to react, and

none of this procedure applies anyway.

One thing that we have not considered so far, is the possibility that after the reaction θp > 1.

This corresponds to the unphysical situation where there was so much chemical A and B in the

solvent that, if the reaction were to run to completion, then we do the same procedure but assume

that ψn+1
A 6= 0 and θn+1

p = 1. This gives us

φn+1
A =

Q−MB

(
φnB −

b
aφ

n
A

)
MA

(
1− b

a
MB
MA

) (4.14)

φn+1
B = φnB −

b

a
(4.15)

where we now have

Q = ρmθ
n
p + ρpθ

n
s +MAφ

n
A +MBφ

n
B

Note that, because ψi = φi/θs, and θs = 0, this does not make any mathematical sense and the

variable ψi has lost meaning. Still, this result holds. In practice, the advective and diffusive fluxes

would account for the impermeable (or semi-permeable) solid, and would prohibit this situation

from arising.

4.2.2 Weak formulation of PDEs

Advection-diffusion equation. The advection-diffusion equation, written generically for an

unknown scalar function c is

w · ∇c−∇ · (κ∇c) = f (4.16a)

c = gD on ΓD (4.16b)

(wc− κ∇c) · n = gR on ΓR (4.16c)

64



Algorithm 3: QSSR complete reaction

input : {ψni }, {θni }, {Mn
i }, a, b

θns = 1− θnp ;

J = (ρm − ρp)θnp + (MAψ
n
A +MBψ

n
B)θns ;

if θp = 0 then{
ψ
n+1/2
i

}
← aqueous_reaction({ψni }, {Mn

i }, a, b);

if ψ
n+1/2
C ≥ ψ′C then{
ψn+1
i

}
,
{
θn+1
i

}
← precipitate_reaction({ψni }, {θni }, {Mi}, {ρi}, a, b)

end

else{
ψn+1
i

}
,
{
θn+1
i

}
← precipitate_reaction({ψni }, {θni }, {Mi}, {ρi}, a, b)

end

output:
{
ψn+1
i

}
,
{
θn+1
i

}
where κ is the variable diffusivity and the flow field w is incompressible (∇·w = 0). The boundary

ΓD corresponds to Dirichlet conditions and ΓR has the Robin boundary condition. The above PDE

can be represented in weak form with scalar trial function v by∫
Ω
vw · ∇c dx + κ

∫
Ω
∇c · ∇v dx =

∫
Ω
fv dx +

∫
ΓR

vgR ds. (4.17)

A detailed derivation can be found in any introductory textbook on the finite element method; for

example see [54, 39]. Note that we do not employ the now-standard streamline-diffusion method

that provides stability for advection-dominated problems. Simulation of advection-dominated flows

should use some stabilization scheme.

Time-stepping. Upon discretization of the time-dependent advection-diffusion equation above,

one obtains a linear system of the form

Bu̇ +Au = f (4.18)

where A, B are matrices and f is a vector. This can be solved in time by the implicit Crank-

Nicholson (CN) method [54, p. 154]:(
B +

∆τ

2
A

)
un =

(
B − ∆τ

2
A

)
un−1 + ∆τ

(
fn − fn−1

)
(4.19)

which is O(∆τ2) in time and unconditionally stable; this absense of a stability criteria makes (CN)

preferred over explicit methods such as Forward Euler or even Runge-Kutta algorithms.

Variable-coefficient brinkman FEM. Our model for the fluid-structure dynamics is a

multiphase form of the zero-Reynolds number momentum equation. Due to the solid phase being
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assumed immobile and an unconventional choice of stress tensor, one can end up with a variable-

coefficient version of the well-known Brinkman equation; see Chapter 2 or [36] for a discussion on

the validity of this choice. To simulate this equation, we use the weak form of Eq. 4.10:

−∇2q + β(θs)q + θs∇p = f (4.20a)

−∇ · u = 0 (4.20b)

which is given by∫
Ω
∇q : ∇v dx +

∫
Ω
β(θs)q · v dx−

∫
Ω
p(∇θs · v) dx−

∫
Ω
θsp(∇ · v) dx

=

∫
Ω

f · v dx +

∫
∂Ω

(∇q · v) · n dS −
∫
∂Ω

(θspv) · n dS, (4.21a)

−
∫

Ω
(∇ · u)φ dx = 0 (4.21b)

which can be solved for q and p, with test functions v and φ from appropriate function spaces.

The forcing f is preserved in order to use the method of manufacturing solutions to validate our

numerical code in the next section.

4.2.3 Validation

This section contains validations for the finite element methods described above. There is no

numerical validation for the QSSR algorithms. Because the reaction equations are algebraic, one

simply needs to verify that mass before and mass after a reaction is conserved up to machine

precision.

Steady advection-diffusion equation. For validation purposes, the domain is a rectangle

(x, y) ∈ [−2, 2] × [−1, 1], and all boundaries are Dirichlet, i.e. ΓR = ∅. Using the method of

manufactured solutions, the solution, velocity parameter, and forcing function are:

c(x, y) = x4y4 (4.22a)

wx(x, y) = 2y(4− x2) (4.22b)

wy(x, y) = −2x(1− y2) (4.22c)

κ = 2.3 (4.22d)

f(x, y) = 8x3y5(4− x2)− 8x5y3(1− y2)− 12κx2y2(x2 + y2) (4.22e)

where we note our flow field w = (wx, wy) is incompressible. The convergence results are shown

in Fig. 4.4(a), where we see the expected convergence rates. These convergence rates are for the
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(a)
(b)

Figure 4.4: Validation of time-dependent advection-diffusion equation. (a) Convergence study for
steady advection-diffusion equation using method of manufactured solution on rectangular domain.
(b) Convergence study for time stepping on diffusion equation (no advection). This convergence
study was conducted in the “Y-shaped” domain, and all errors were taken after one time unit of
simulation. Both errors are relative.

steady state advection-diffusion equation. Because we do not use a stabilization term, increasing

Pe will increase the error for a given mesh.

Figure 4.5: Convergence study for the variable-
coefficient multiphase Brinkman equation, using the
method of manufactured solutions. Results show
second-order convergence in space for the velocity vari-
able, with first-order convergence for the pressure vari-
able, as expected.

Time stepping. Two schemes are

tested to approximate the time derivative

in the ADR equations. We test Back-

ward Euler and Crank-Nicholson schemes,

which are first and second order accurate,

respectively. Using the relative error in

a Y-shaped domain (see Fig. 4.6) demon-

strates these expected convergence rates –

see Fig. 4.4(b). The CN scheme is used in

the simulations of Sec. 4.3.

Brinkman equation. The Brinkman

code is tested with the following manufac-
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tured solution:

qx(x, y) = −x4y2, qy(x, y) = 4x3y3/3,

p(x, y) = x3y3, β(θs)(x, y) = 0.5 + 0.4 cos(xy),

θs(x, y) = 0.5 + 0.4 sin(7xy), fi(x, y) = −∇2qi + β(θs)qi + θs∂ip,

where q = 〈qx, qy〉 and f = 〈fx, fy〉. The convergence results are shown in Fig. 4.5. Because

the velocity variables use quadratic elements, and pressure uses linear elements, their respective

convergence rates are second and first order, respectively, as the mesh is refined. The pressure

being chosen one degree less than the velocity is chosen for stability criterion of the Taylor-Hood

finite element family. This family is commonly employed for Stokes equations, and has here been

adapted to the Brinkman system.

4.3 Results

This section will detail simulation results in a realistic, Y-shaped domain with wavy outflow.

This domains are visualized in Fig. 4.6. All of the simulations of this chapter were implemented

and run using the open-source packages; see Appendix C for more details.

4.3.1 Wavy domain geometry

To showcase the ability of our framework and numerical method to handle complex, realistic

geometries, we will run a full simulation in a “wavy” Y-shaped domain. Simulation results are

shown in Fig. 4.7. Flow is pumped from left to right; aqueous chemicals A and B are input on

the bottom and top inflow channels, respectively. The Pe for this simulation is 30, reflecting an

advection-dominated scheme that is nontheless within our accuracy requirements for our discretiza-

tion method. As the aqueous chemicals meet in the middle of the channel, they react and, because

of the lack of a precipitation threshold, instantly precipitate to form solid. As the solid volume

fraction increases, the flow velocity field responds by going “around” the developed membrane. the

precipitate follows the curves of the domain, as is expected. For this first simulation, we do not

include a volume-fraction-dependent diffusivity, which leads to bidirectional membrane growth.

This would be a very difficult problem to simulate using existing mathematical methods detailed

in Sec. 1.2 that required explicit, a priori knowledge of where the precipitate would appear. Because

the emphasis of this domain is on the method itself, and not necessarily on scientific investigation,

we do not comment further on the solution. In the next section we will give a brief description of
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a way simulations can be used for scientific inquiry to aid experimentalists in answering questions

that are either too technically involved, or impossible, to conduct with current experiments.

4.3.2 Hypothesis for unidirectional growth

Figure 4.6: Schematic of wavy
domain. The generality of the
FEM scheme allows us to run
simulations on domains with
realistic geometries.

One important experimental observation given in Sec. 1.1 was

that, for certain precipitate reactions, lateral membrane growth is

asymmetric. This is attributed to the precipitate membrane being

selectively permeable to negatively charged ions. Because the per-

meability of the membrane cannot be measured directly, this is an

excellent case study for using the current model framework to aid

scientific investigation.

A straight Y-shaped domain is used. This is similar similar to

the previous section but without the wavy outflow. In this simu-

lation the diffusion term κi will be variable. This diffusion term

should be linked to the volume fraction, but the exact relationship

is unclear and for us to decide. One method to obtain unidirectional

growth is to allow the aqueous chemical to diffuse across solid. The

most straightforward expression for Péclet number is then:

Pe′ =
Pe

θp + zθp
, (4.23)

where Pe′ is the “normalized” Péclet number and z � 1. This

definition is useful because, for a pure fluid we have Pe′ = Pe, but

for pure precipitate we have Pe′ = Pe/z. Therefore, if z = 0, the

precipitate is impermeable (infinite Pe implies zero diffusivity) and

for 0 < z < 1 diffusion is hindered but non-zero.

An alternative hypothesis for how one obtains unidirectional

growth is the following, which we will call hypothesis 2 (the cur-

rently accepted hypothesis we call hypothesis 1). Suppose the mem-

brane is permeable to all ions, but in unequal amounts. This is

different than being impermeable, as in isolation either ion could pass through unhindered. The

reason this, potentially, could result in asymmetric growth is that a reaction is always occuring at

the interface, so even though in isolation the slower moving ions could pass through, they react to

form the product before they are able to cross.
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Our exploration of these two hypothesis are using z = 0.5 for species A, and z = 0 (hypothesis 1)

and z = 0.25 (hypothesis 2) for species B. In the simulations of hypothesis 1, we see unidirectional

growth in the direction of the B-side of the channel; this agrees with both experiment and our

expectation of what should happen. In hypothesis 2, which is the real object of our small study, we

see uneven bidirectional growth – growth occurs faster in the direction of B, but there is still some

lateral membrane growth in the direction of the A side of the channel. These results lend further

evidence to the hypothesis that the membrane really is impermeable to one charge. This study,

while simple, would be impossible to conduct with experiment as one cannot modify diffusivity

experimentally (using the same reactants). Therefore, our framework and simulations have lended

aid to experimentalists and domain-specific scientific inquiry.

4.4 Conclusion

These simulations validate the framework derived in Chapter 2 for the specific application of

precipitation reactions in microfluidic channels. While time-splitting of advection-diffusion-reaction

equations is not a new idea [113, 29], to our knowledge, this is the first use of QSSR applied to

ADR equations while also handling the reaction terms algebraically. This significantly decreased

the computational cost of simulation for two reasons: (1) simulation of the model equations is only

done on the advection-diffusion timescale, skipping over the much shorter reaction timescale while

achieving asymptotically similar results and conserving mass exactly, and (2) the nonlinear, coupled

PDEs were made linear and independent. The benefit of using this framework and numerical

discretization is demonstrated in this section. In particular, its ability to simulate both chemistry

and fluid-membrane interaction in realistic microfluidic geometries. This chapter also provided

further evidence to the hypothesis for how unidirectional growth is achieved in a manner that

would be impossible to conduct experimentally. This chapter supports the use of our model in

microfluidic experiments by experimentalists to aid their intuition and probe questions that are

impossible, difficult, or simply expensive to conduct experimentally.
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(a) (b)

Figure 4.7: Flow at 4 different time points for wavy-shaped domain. Left side represents solid
volume fraction (red = 1, blue = 0) along with velocity vector field, right side shows velocity
magnitude; rows are at equivalent times. One can see the velocity field going to no-slip as the
precipitate develops. Additionally, the precipitate follows the curves of the domain, as is expected.
This would be a very difficult problem to simulate using a method that required explicit knowledge
of where the precipitate would appear.
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CHAPTER 5

SINKHOLE FORMATION

In this chapter, the model framework is adapted beyond the motivating experiment. This will

demonstrate the framework’s ability to model porous media with complex rheology. Several fa-

mous sinkholes demonstrate the enormous effect these geological phenomena can have on urban

developments. Significantly, sinkhole formation can be aggravated by human factors. Understand-

ing these factors is a major motivation for scientific inquiry [59, 121].

In 2010 a sinkhole opened up in Guatemala City that swallowed a three-story factory [105]. In

1980 a drill poked a small hole into a salt mine, which unfortunately was lying below a pond. The

salt was dissolved, forming a massive sinkhole in Lake Peigneur [6]. Sinkholes have been the focus

of PBS documentaries1 and have even formed on the White House lawn [60].

Sinkholes form when surface water (either from rain, rivers, or underground aquifers) seeps

through cracks in the bedrock. This flow of water gently erodes the bedrock over time. When the

bedrock is weakened to the point that it cannot support the earth above it, a collapse occurs, which

we see as a small – or large! – divit on the earth’s surface.

The study of geophysical processes has been conducted numerically [3, 2, 4] and experimentally

[83, 115, 102]. Fieldwork on active sinkholes is possible using ground-penetrating waves (laser,

radar) to detect the sub-terranian growth of known sinkholes in real time [47, 52]. Labwork has

also been conducted to examine how sinkholes might form in model setups.2

In this chapter the model framework of Chapter 2 is adapted to study geophysical processes,

specifically sinkhole formation. Notably, this simulation will not include reaction terms, but will

include the discrete particle approach to modeling complex media. The chapter proceeds as fol-

lows: Sec. 5.1 describes how to adapt the model framework of Chapter 2 to study geophysical

phenomena. In Sec. 5.2 the specific algorithms to make simulations feasable are described. Finally

in Sec. 5.3 simulation results are shown.

1Sinkhole documentary: https://www.pbs.org/wgbh/nova/video/sinkholesburied-alive
2Video of one experimental setup: https://www.youtube.com/watch?v=1d_5yLnlpA0
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5.1 Geophysical model

The model will consist of two phases: fluid and porous material. The porous material is a

combination of soil, clay, sand, and rock; these materials are all combined into a single phase for

model simplicity. Each point in space is occupied by some fraction of these components such that

θs + θp = 1, (5.1)

where θs and θp represent the volume fraction of fluid (or “solvent”) and porous material, respec-

tively. The fluid will be represented by a continuum, and the porous material will be represented

by discrete particles. We assume that all material motion is slow enough that a quasi-immobile

assumption on the porous material is valid, and therefore the fluid Darcy velocity will be incom-

pressible and obey the multiphase Brinkman equation described in Chapter 2 with the KC friction

term:

∇2q− h θ2
s

(1− θs)2
q = θs∇p, (5.2a)

∇ · q = 0, (5.2b)

where q is the fluid Darcy velocity, h is the friction coefficient, and p is the common pressure

experienced by all multiphase components. The porous material, modeled with discrete particles,

is subject to the force of gravity, cohesion, adhesion, and seepage.

Figure 5.1: Sinkhole schematic with boundary
and initial conditions. Not to scale.

The domain itself will be two-dimensional and

idealized to simplify analysis. A sketch of the

domains and boundaries is given in Fig. 5.1 and

the finite element discretization of the domain

can been seen in Fig. 5.2. The middle and bottom

boundaries will be considered walls from which

particles will experience an adhesion force. For

the fluid, the middle and bottom boundaries will

be no-slip, no-penetration walls. The left and

right boundaries will be no-flux and the top will

have uniform inflow. The strength of this inflow

will be one parameter that is varied to influence

sinkhole formation.
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The variable unknowns, for all space x and time t, are θs, θp, p, and q. The associated

parameters needed are the mass densities of fluid and porous material, ρs, and ρp, respectively, the

friction coefficient h, the discrete cohesion strength coefficient sp, the discrete particle interaction

distance ε, the discrete adhesion strength coefficient sw, and the coefficient of gravity g. Next a

solution algorithm to run the full simulation is provided.

5.2 Numerical discretization

Figure 5.2: Sinkhole mesh after fi-
nite element discretization.

This section details the discretization techniques that will

allow us to solve the full sinkhole system in time and space.

The fluid system is solved on a finite element mesh (see

Fig. 5.2) using the previously-described and validated weak

formulation of Brinkman’s equation (see Sec. 4.2). The point

particles, including their forces and dynamics, were previ-

ously described in Sec. 2.2.2. The porous material volume

fraction field θp will be interpolated from the position of their

point particles using the discrete-to-continuum transform G,

as described in Sec. 2.3. The simulation algorithm proceeds

as follows. Assume all variables are known at time tn. Con-

sider N particles pj , j = 1, 2, . . . , N and the finite element

mesh composed of M nodes xi, i = 1, 2, . . . ,M . Repeat the

following steps:

1. Use the discrete-to-continuum transform G of Sec. 2.3 on the discrete particle field pj(tn) to

compute the volume fraction fields θp(xi, tn+1).

2. Compute θs(xi, tn+1) from θp(xi, tn+1) using Eq. (5.1).

3. Solve Eq. (5.2) for q(xi, tn+1).

4. Use the algebraic equation for particle velocity in Eq. (2.60). Use this particle velocity to

obtain pj(tn+1) by applying a forward difference scheme for position.

5.3 Results

A single initial condition configuration is used for the particles, where they are stacked above

the boundary “hole” in the middle of the domain. This initial condition was created by running a
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simulation with particles, generated with CircGeometry.jl (see Appendix C), being set above the

hole and zero inflow velocity and running until there is no more movement. In other words, the

initial condition was generated by letting particles settle into place. This single configuration which

will allow the isolation of the effect of varying fluid input strength, vmax, and “structural integrity”,

as modeled through removing particles in a radial arc from the center of the domain, rcut. See

Fig. 5.3 for an initial condition where the “arc” of removed particles, rcut, is small.

Figure 5.3: Zoomed-in view of initial condition for particle distribution. Succesively larger chunks,
radially from the center, will be removed. This will simulate sinkholes that have varying degrees of
“structural integrity”.

The only results presented in this section will be to search a two-dimensional parameter space

where the first parameter is the strength of the input fluid velocity vmax, and the second parameter

is the radial distance, from the center, of particles that are removed before running the simulation,

rcut. Additionally, gravity is set to zero so as to isolate the effect of seepage force. Before running

the simulation, one might imagine that the effect of the seepage force will be to “whisk away”

the particles closest to the opening in the boundary, particle after particle, until the amount of

particles being removed weakens the “structural support” of the opening and a bifurcation occurs

where particles fall until there are no more particles above the hole. We will call this type of collapse

“slow-to-sudden”. Under this collapse regime, a bifurcation in parameter space is expected – if the

seepage force is too small compared to the cohesion force of the particle, or the radial removal

of particles is too small so that the structural support is greater than the seepage force, we will

expect no particles to fall, and therefore no sinkhole to form. However, if this combination of

effects is large enough, a sinkhole will develop. Therefore, the current simulations seek to (1)

verify that this bifurcation exists, and (2) identify the relationship between parameters that might

suggest whether one effect is more significant than another. This second point is what is important
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for fieldwork where scientists would want to predict which underwater caverns are most likely to

develop damaging sinkholes.

One representative simulation is given in Fig. 5.5. This type of collapse was representative of

all simulations run in this chapter. All particles above the hole fall simultaneously, contrary to

the hypothesis that collapse will start with individual particles at the hole falling before a collapse

occurs. This type of behavior is contrary to experimental evidence, and therefore suggests that

more fine tuning to the model is necessary before a simulation analogous to experimental setups

can be achieved.

(a) (b)

Figure 5.4: Varying two sinkhole parameters. Vertical axis signifies number of particles who have
passed through the hole at y = 0, and horizontal axis is time. (a) Varying vmax leads to interesting
differences in dynamics while (b) varying rcut does not.

Varying the two parameters results help explain why the “slow-to-sudden” collapse does not

appear in the simulations. In Fig. 5.4(a) the radial amount of cut away particles, rcut, is held

fixed while the seepage velocity is allowed to vary, while in Fig. 5.4(b) the opposite occurs. It is

clear that rcut, a proxy for structural integrity, does not impact whether or not a sinkhole forms

or, furthermore, the rate of collapse when it does occur. Varying vmax, on the other hand, both

impacts whether a collapse occurs (the lowest vmax does not lead to sinkhole formation) and, if it

does occur, impacts the rate of formation. This further demonstrates that the current model must

be amended to better represent structural integrity of sinkhole formation, and eventually obtain

the “slow-to-sudden” collapse type that has been demonstrated in laboratory experiments [102].
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(a) (b)

(c) (d)

Figure 5.5: Sinkhole formation for rcut = 0.16 and vmax = 0.3. Particle and flow profiles are shown
for (a) t = 0, (b) t = 1.7, (c) t = 3.3 and (d) t = 5. All particles fall simultaneously, contrary to
the hypothesis that collapse will start with individual particles at the hole falling before a collapse
occurs.

5.4 Conclusion

The model framework presented in this dissertation was adapted to represent geophysical flows.

Sinkhole dynamics were examined by varying two parameters, rcut and vmax, representing a proxy

for structural integrity and magnitude of seepage force, respectively. It was found that varying

seepage force created a bifurcation in sinkhole dynamics, while varying rcut did not. This suggests
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that the model should be amended to better represent structural integrity in order to accurately

reflect what is known about sinkhole dynamics from lab experiments. In summary, although further

refinements are needed, this chapter showcased the model framework’s ability to handle geophysical

flows, specifically it used the discrete particle representation of complex porous media as well as

the discrete-to-continuum transform at production scale.
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CHAPTER 6

DISCUSSION AND CONCLUSION

This dissertation was devoted to developing a multiphase framework for handling complex chemistry

and the generation of precipitate structures which impede fluid flow. Numerical discretizations and

simulations were conducted to demonstrate the applicability of this model framework. Open-

source code is available online for the interested reader to make use of this framework for their own

problems. We hope that the reader has learned something and will make use of this framework in

their own scientific area. This final chapter reviews the achievements of this dissertation and detail

two more scienific problems that we believe could use this framework succesfully.

This dissertation was split into two parts; the first was for theory and validation, while the

second was used for detailing two specific applications. In Chapter 1 a novel model framework was

motivated by discussing a microfluidic experiment that could not be modeled by existing methods.

We detailed these methods, and provided a bird’s-eye view of what would be accomplished over

the course of the dissertation. In Chapter 2, the most important chapter of the dissertation, the

model framework was derived using rational principles. In Chapter 3, the model framework was

validated, specifically by using a reduced model that admitted analytic solutions; we examined the

interpretation of multiphase drag while detailing an indirect method that is useful for computing

drag on multiphase bodies; we provided initial simulations using the discrete particle method for

modeling complex rheology; and we presented a one-dimensional validation of the continuum-to-

discrete operator.

The second part of the dissertation were devoted to full simulations of two application areas: mi-

crofluidic precipitation experiments and sinkhole dynamics. The microfluidic experiment was the

motivating experiment for this entire dissertation, and so its succesful simulation justified the de-

velopment of the model framework. As an example of the usefulness of this model framework to

experimentalists, simulations produced evidence for a hypothesis for why lateral membrane growth

is asymmetric. In the sinkhole problem, we were able to showcase how our framework could be

employed for scientific domains outside of the microfluidics community, in particular by using the

discrete particle approach for modeling flows containing solids with complex rheology.
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6.1 Future applications

This section details two specific scientific areas that we believe would benefit from this model

framework. For researchers outside of these areas, we hope that reading this section will give

insight into how our framework could be adapted to your scientific domain. Possible extensions to

the model to extend it to other scientific areas are also discussed.

6.1.1 Ultrasonic drug delivery

Therapeutic ultrasound techniques are non-invasive and potentially beneficial in a number of

clinical applications, including treating prostate cancer, breaking up blood clots and drug delivery

through the blood-brain barrier [28, 63, 27]. All of these techniques are affected in one way or

another by the physical phenomenon of inertial cavitation. When a fluid is subject to acoustic

forcing, local pressure fluctuations cause the formation of gas bubbles. These bubbles oscillate

under the effect of the acoustic field and, under certain conditions, collapse violently in a process

called inertial cavitation to produce a pressure and temperature shock wave. This shock wave is

viewed by medical practitioners as either beneficial or harmful depending on the application.

While our framework, in its present form, does not include the ability to add gas phase dynamics,

there does exist the possibility of including a lipid vesicle to deliver drugs under the effect of

ultrasound. These vesicles have complex rheology [114] and so it would be possible to implement

them with our discrete particle approach. The effect of a passing ultrasound wave to temporarily

“dismember” the vessicle, in order to to release drugs, would be possible by temporily affecting

the cohesion strength s and buffer distance ε of the discrete particles representing vesicles. While

mathematical models specific to these lipid vesicles exist [82, 64], our model would include the

ability to couple fluid-structure interaction and drug reactions in a single, unified framework.

6.1.2 Biofilms in water filtration

Water filtration is incredibly important for the modern world. The UN has estimated that 1.6

billion people live in communities where water is “economically scarce”, refering to countries that

“lack the necessary infrastructure to take water from rivers and aquifers” [76]. Additionally, a

changing climate will exacerbate this issue in the future.

Before filtering, surface water contains impurities that are dangerous and unhealthy for con-

sumption, including pathogenic microorganisms and potentially carcenogenic chemical waste. A

common method for water filtration is to pass the unfiltered water through a physical filter, which
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stops particles above a certain size. While this process works in practice, it is also unsustainable.

Biofilms grow and “foul” the membrane over time, such that it needs to be replaced. One method

for combating this biofilm fouling is through the technique known as electroflocculation [18], where

a sacrificial reactive surface (typically made of alumnimum or iron) is placed in a pipe before the

filter such that, upon electrification, impurities react and coagulate into “flocs”, which experience

a buoyant force and drift upward into a collection duct separate from the filter itself. The effi-

cient application of this technique can reduce the replacement times required by filters by orders

of magnitude.

This problem is an ideal situation for our model framework, employing the more advanced

use of complex rheology. In a single problem, it includes reaction (electrified aluminum combined

with impurities), transport of materials of complex rheology (flocs), and fluid-structure interaction

(fouling of the filter via accumulation of impurities).

6.1.3 Framework extensions

Figure 6.1: Images demonstrating bi-
directional, complex membrane growth from
microfluidic experiments. Reproduced from
[109] with permission.

We end this dissertation by summarizing the

possible extensions to our model to make it ap-

plicable to scientific domains not considered in de-

tail. First, we have never mentioned the possibility

of electromagnetic forces. Because many scientific

and industrial applications include, or even rely on,

these forces, their exclusion from this dissertation

certainly leaves an open area of research whose in-

clusion would extend the number of applications this

framework could be applied towards.

We have also neglected any gas dynamics, which

could be important for applications that wish to in-

clude, for example, air pockes in geophysics or gas

bubbles in ultrasonic therapies. Additionally, while

some of the numerical methods were efficient and

used modern techniques, many did not, as that was

not the primary concern of this dissertation. This leaves room for considerable improvement in

implementation. Finally, implementing these methods in three dimensions is conceptually sound

but has not been implemented yet in any of the open-source code provided in appendix C.
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For a final possible extension, see Fig. 6.1 from a microfluidic experiment very similar to the

one described in Sec. 1.1. The difference with this experiment is that the membrane growth is

bi-directional and not “simple”. We see two very different membrane growths on either side of the

membrane; these complex membrane growths are not possible to achieve using the current method,

as we have “homogenized” over growth space. However, if one was determined to achieve this level

of resolution in the membrane crystal growth, here is one possible approach: make the diffusion

coefficient in the ADR equations a tensor quantity that depends not only on volume fraction, but

also gradients in volume fraction. One can imagine that this will allow preferential diffusive crystal

growth. That being said, this makes no mention of the incredible computational cost associated

with resolving this spatial scale, so resolving both the full channel advection with this crystal growth

is likely not advisable.

To summarize, the results of this dissertation are (1) a rigorous derivation of a model frame-

work that conserves mass and incorporates fluid-structure interaction, and (2) numerical methods

for solving the full PDE system, which have been implemented in open-source software. The

micrometer-scale resolution of our numerical simulations for microfluidic problems is a huge suc-

cess. The model framework developed here allows simulations that would not have been possible,

or at least computationally intractable, using existing methods. The framework has applications

towards precipitate reactions where the precipitate greatly affects the surrounding flow, a situation

appearing in many laboratory and geophysical contexts including the hydrothermal vent theory for

the origin of life. More generally, this framework can be used to address fluid–structure interaction

problems that feature the dynamic generation of structures.
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APPENDIX A

SOLVING RICATTI’S DIFFERENTIAL EQUATION

In Sec. 3.1, the reduced model formulation led to a Ricatti differential equation with constant

coefficients, which is exactly solvable. The solution technique to Ricatti’s differential equation [see

104, p. 97] is not very well known, so the derivation is stated here for the interested reader. A

homogeneous 1st order ODE is called a Ricatti equation if it is quadratic in the unknown, i.e.

y′(x) = q0(x) + q1(x)y(x) + q2(x)y2(x) . (A.1)

If q0(x) ≡ 0, this reduces to Bernoulli’s equation [see 104, pp. 95-96]. In general, one can transform

Ricatti’s equation to an equivalent 2nd order linear differential equation. In this appendix, we

detail this transformation and explicitly solve for the case of constant coefficients q0, q1 and q2.

First, define a new variable v by

v = q2y (A.2)

so that Eq. (A.1) becomes

v′ = v2 +Rv + S (A.3)

where R = q1 + q′2/q2 and S = q0q2. Then, introduce another variable, u, related to v via a

Cole-Hopf transform:

v = −u
′

u
(A.4)

and now the original equation, in terms of u, becomes

u′′ −Ru′ + Su = 0 . (A.5)

For constant coefficients R and S, Eq. (A.5) can be solved exactly. Using notation from Sec. 3.1,

the constant coefficient Ricatti equation is

ψ̇C = crψAψB −
αβ

ρp
ψC +

β

ρp
ψ2
C (A.6)

where ψC = ψC(t) is the unknown variable and r, c, ρp, α, β, ψA, and ψB are fixed parameters.

Relating this to Eq. (A.1), let y = ψC , q0 = crψAψB, q1 = −αβ/ρp, and q2 = β/ρp. Therefore, in

the final equation, R = q1 + q′2/q2 = −αβ/ρp and S = q0q2 = crβψAψB/ρp.
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The solution to Eq. (A.5) when R and S are constant depends on the eigenvalues of its corre-

sponding characteristic equation. More specifically, it depends on the sign of the determinant of the

root of the characteristic equation R2 − 4S = χ/ρ2
p, where χ, defined in Eq. (3.4), was determined

to be positive for physically realistic parameter values.

The solution to this case – where the characteristic equation to Eq. (A.5) has two real, distinct

roots – can be found in any introductory book on ODEs [see 13, pp. 137 - 143], but for completeness

the solution is detailed here with homogeneous initial conditions y(0) = 0:

y(t) =
γ1γ2

q2

[
eγ2t − eγ1t

γ2eγ1t − γ1eγ2t

]
. (A.7)

where

γ1 =
R+
√
R2 − 4S

2
, γ2 =

R−
√
R2 − 4S

2
(A.8)

R = q1, S = q0q2. (A.9)

and the antiderivative of this solution is given by∫
y(t) dt = − 1

q2
log(γ1e

γ2t − γ2e
γ1t) + C (A.10)

where C is an arbitrary constant of integration.

84



APPENDIX B

TREE-BASED CELL LISTS FOR FAST

INTERPOLATION

Due to the velocity flux “seepage” force experienced by the discrete particles in a fluid flow, we

require a fast method to interpolate our velocity field at a point not on the mesh. In theory, this is

not a difficult algorithm to implement, as the basis functions for our finite elements are known [93].

However, the process of actually finding which element a point lies within can be costly, and boils

down to an unstructured search algorithm. To speed up this search, one can use a cell-list approach

supported by a tree-structure to find an enclosing element. The process has two components; one

component needs to be run once to initialize the data structure (the cell list), and the second

component needs to be run every search (the tree structure). Another benefit of this data structure

is that it extends easily to three dimensions.

Figure B.1: Example of finite elements (black
solid) whose indices will be associated with
the cell (red dash). An element is associated
with a cell when at least one of its nodes lies
within the cell. Elements can be associated
with more than one cell.

The Cell List: Cell lists are data structures

by which a domain (two-dimensional in this case) is

divided into rectangular “cells” (see Fig. B.1). Each

of these cells has a list associated with it. In the case

of the present situation, each list will be an array of

indices for the elements that are, at least in part,

inside that cell. The benefit of this data structure

is that there are only a few elements within each

cell. For example, it is much faster to scan over a

list of 12 elements (all components of the same cell),

rather than search over the entire domain, which

might include tens of thousands of elements.

The Tree Structure: The above procedure

still leaves open the question of how the point-containing cell will be found. One could, of course,

simply iterate over the cells. This is easier than iterating over elements because (1) cells are rect-

angular, so it is computationally cheaper to check for a point within a rectangle oriented parallel

to the coordinate axes rather than an arbitrary quadrilateral, and (2) there are less cells than
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elements. However, there is an easier approach as long as care is taken initially to align the cells

perfectly as iterations of a “tree structure”. This tree has different levels, each level subdividing

the one above into four equivalent rectangles. For example, enclose the (possibly complex) domain

into a bounding rectangle. This rectangle is level 0. At level 1, divide level 0 into four equivalent

rectangles. Repeat the process until you have the refinement in cells that you require; this will be

problem-dependent. At the end of the day, this search algorithm will be logarithmic, as opposed

to linear, in the number of cells. One disadvantage is that the number of cells at the lowest level

must be a power of four, but that is a small price to pay for the efficiency gained at run-time.
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APPENDIX C

SOFTWARE PACKAGES

This appendix details four software packages that I have developed over the course of my graduate

career. They are all open-source, actively developed, and I encourage the reader to use them to

explore this model framework. If I may prosthelytize for two sentences, open-source software is a

backbone of modern computation. I encourage everyone to release open-source packages, especially

pertaining to novel algorithms and methods, so that students and researchers might learn without

requiring the substantial time and energy investment of coding an unfamiliar algorithm oneself.

eFEM.jl. This software package is finite element code in the Julia language focused on fluid-

dynamics applications. It emphasizes easy problem setup and solutions, without worrying about

the “backend” about how the problem is actually discretized and solved. This makes it ideal

for modeling applications, where small changes in parameters or geometries occur frequently, and

computational efficiency is de-emphasized. Currently, it can solve the following time-independent

PDE systems:

• Poisson: −∇ · (α∇u) = f ,

• Advection-Diffusion: −u · ∇c = ∇ · (κ∇c) + f ,

• Stokes: −∇ · (µD(u) = ∇p+ f , ∇ · u = 0,

• Brinkman (multiphase): −α1∇2u + α2u + α3∇p = f , ∇ · u = 0.

All of the above systems are formed via operators, so unsteady problems (such as the ones solved

in this dissertation) are possible as well. Additionally, all equations except Brinkman are available

in an axisymmetric form. The package has the capability to generate its own rectangular meshes,

but can also take in meshes generated in the open-source finite element meshing software Gmsh

[41]. It is available in a Github repository1 and works on all operating systems.

StokesParticles.jl. This software package allows one to simulate “Stokes particles”, meaning

inertia-less particles, subject to discrete forces. It also contains functionality for using the fast Gauss

transform [71], in case one wants to generate a continuum field from the discrete particles. It uses

1https://github.com/pseastham/eFEM.jl
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Lennard-Jones-like potential forces for particle-particles and particle-wall interactions, and includes

cell list algorithms for the efficient evaluation of these forces. It is available in a Github repository2

and is only available on Linux operating systems.

eFEMpart.jl. This software package is finite element code in the Julia language focused on

complex fluid-dynamic and porous-media applications, with the possibility of including a parti-

cle simulator in the framework of the discrete element method. The ’eFEM’ component allows

the use of Finite Elements discretizations to solve common problems in fluid dynamics, and the

’part’ refers to mesh-free particle methods (discrete element method) primarily aimed at granular-

media simulations where continuum constitutive laws are unavailable. It is built on eFEM.jl and

StokesParticles.jl, described above, while including code to couple these two packages together. It

is available in a Github repository3 and is only available on Linux operating systems.

Figure C.1: Logo for CircGeometry.jl.

CircGeometry.jl. CircGeometry.jl takes in some

basic information related to the object one is trying to

approximate with ”filling circles”, and exports a file in a

custom “circ” format. The following is the algorithm used

to generate these geometries in an efficient manner: the

first step is to take in both the outline geometry, the vol-

ume fraction, the number of “filling” circles, and an inner

“buffer” percentage that prevents circles from being too

close together, even though they won’t overlap. The out-

line geometry can be a circle, a rectangle, or an arbitrary polygon (see Fig. C.2). The volume

fraction can be any number between 0 and around 0.7; 0.7 is close to the theoretical maximum

for circle packing in a plane. From the given data, one can compute the “ideal radius” for the

filling circles to be packed into the outline. Then we create a random distribution of radii about

this “ideal radius”, and generate the random assortment of radii, which are then ordered largest to

smallest.

Now, the placing begins in an iterative fashion. First, the circle is placed and checked for

whether the filling circle is both inside the outline, and then checked whether it is overlapping any

of the previously placed circles (while accounting for buffer). If both checks pass, then that circle

placement is permanent, and the iteration proceeds. If the filling circle is outside the outline, then

2https://github.com/pseastham/StokesParticles.jl
3https://github.com/pseastham/eFEMpart.jl
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a new random initial position is chosen. If the filling circle is inside the outline, but overlapping a

previously placed circle, then we allow the current filling circle to “wiggle” away from any adjacent

circles or, after a fixed number of attempts, a new random initial starting location is chosen and

the process starts over. This whole process goes on until either every filling circle is succesfully

placed, or a max number of iterations is reached where the process fails and an error message is

printed. A succesful placement is then either printed to a circ file to be used by a later application,

or an figure in the svg format is saved.

The time it takes to generate a circ file will depend on these parameters, but will generally only

be a couple minutes for production-level files (e.g. volume fraction of 0.4 with 800 circles). This

appendix ignores some details for the sake of expositional clarity. As the source code is open-source,

the interested reader is encouraged to look directly at the program files themselves for any further

questions about implementation. It is available in a Github repository4.

(a) (b) (c)

Figure C.2: Examples of porous geometries that can be generated using CircGeometry.jl. The
software works by filling a (a) circle, (b) rectangle, or (c) arbitrary polygon with circles of random
radii so that a given volume fraction is achieved.

4https://github.com/pseastham/CircGeometry.jl
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